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ABSTRACT

This work presents the results from a set of verification shell problems used
to assess the performance of the higher order shear deformation shell
elements formulated in part I of the present study. The developed element
has been added to the element library of the nonlinear dynamic explicit
finite element code DYNA3D. Several standard verification test problems
are performed using the code DYNA3D with the developed shell element.
Results are presented for different test problems and are compared with
experiments and results from other existing shell elements. The good
overall performance builds confidence in the formulation and
implementation of the proposed higher order shear deformable element.
The superior advantage of the developed element is evident in one of the
examples presented for representation of plastic flow through the thickness
in isotropic materials. The element can be used in crash and metal forming
simulations in local areas of high transverse shear stresses. Local areas of
crack in crash applications and splitting in metal forming applications can
be modeled more accurately with the developed shell element.

Key words: nonlinear higher order shear deformation shell elements,
explicit finite element analysis, shell verification test problems, shell
element performance

INTRODUCTION

It is well known that to ensure its validity, reliability, and accuracy any newly formulated
finite element (FE) has to be put through an extensive testing process. In this manner the
theoretical formulation of the new element will be checked and, more importantly, errors in
its FE code implementation could be found and corrected. Through different test problems the
scope of applicability of the newly developed element could be set, its computational
efficiency and accuracy could be assessed. Good results from the standard test problems can
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build confidence in the formulation and implementation of the element. All this has been very
well realized by scientists and FE software developers, and therefore, many element
validation tests have been developed and published. Verification problems for shell elements
can be found in almost all publication on FE shells. Some of them have proven very efficient
in assessing shell elements performance and are described in the works of Morino et al. [1],
Hughes and Liu [2], Belytschko et al. [3, 4], MacNeal and Harder [5], and MacNeal [6] to
mention just a few.

To assess the performance of the higher order shear deformable shell element formulated in
part I of the present work a standard set of static and dynamic verification test problems was
chosen. Tests were performed on a single element and on element assemblages of regular and
irregular shapes with flat initial geometry, and single and double curvatures. Both
geometrically linear and nonlinear analyses were performed, and elastic or elastic-plastic
materials were used. All tests showed very good accuracy in the shell behavior prediction as
compared with experimental results and results from existing shell elements. The higher order
shear deformable element supremacy over first order shear deformable shells is illustrated
through the transverse shear distribution prediction. Although computationally heavier as
compared to the first order shear deformable shell formulations, the implementation of the
present element fits quite well in a general explicit FE code, providing both efficient and
accurate analysis. The CPU time and the critical integration time step are presented for
several test problems and compared to the ones obtained from the default shell element with
selectively reduced integration inDYNA3D.

VERIFICATION TESTS: DESCRIPTION AND RESULTS

A set of 6 verification problems was selected from the multitude of published shell problems.
The aim was to check the performance with different geometric configurations, loading,
boundary conditions, and materials, which could occur often in engineering practice. Problem
1 involves a single flat element under membrane loading. Problem 2 is the well-known patch
test with prescribed loading. Problem 3 represents a thick beam for which results for
displacements and natural frequencies are presented and compared for linear and nonlinear
behavior. Problem 4 is a square plate solved with elastic and elastic-plastic material, and with
regular and irregular meshes, while problems 5 and 6 represent shells with single and double
curvatures. In addition, a problem is considered for which the transverse shear stresses are the
dominant stresses. The load and boundary conditions are chosen to cause plastic deformation
and flow. Predictions of the developed shell and the standard default shell in DYNA3D are
presented and compared. In what follows description and results of all the test verification
problems are presented.

Problem 1–Single Element Membrane Test

A single element is loaded with uniformly distributed normal and shear load. The geometry,
loading, boundary conditions, and theoretical results are presented on fig. 1. The results from
the present analysis are shown and compared to the exact solution in table 1. As evident from
the presented results, the developed higher order shell element passes this test verification
problem.

Problem 2– The Patch Test

This is the well-known patch test. A prescribed loading is used in the test as opposed to
prescribed displacements because the current implementation does not allow prescribed
values for the higher order terms in the velocity field. The test is described in fig. 2 and the
results are presented in table 2. The results for the stresses and strains in the table are the
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same for all elements in the patch assemblage. Table 2 shows the excellent performance of
the developed element in this test.

Problem 3– Impulsively Loaded Cantilever Beam

This is Example 5.1 from Belytschko et al. [3]. A thick beam is subjected to suddenly applied
lateral pressure. The problem and the FE mesh are shown in fig. 3 and table 3 gives results for
the maximum deflection and the period of oscillation for two values of the loading:p = 0.01
psi corresponding to a linear response, andp = 2.85 psi corresponding to a nonlinear
response. Both linear and nonlinear results with the higher order element are in a very good
agreement with the reference analytic and numerical results.

Problem 4– Simply Supported Square Plate

This problem was described by Belytschko et al. [3]. It involves an impulsively loaded square
plate analyses with both elastic and elastic-plastic materials. Due to symmetry only one
quarter of the plate was analyzed. To check how irregularities in the FE mesh will affect the
solution the problem was also solved with irregular mesh geometry for the elastic material.
The problem is described in fig. 4. and results from the regular FE mesh solution are
presented in fig. 5. Fig. 6 shows results from the irregular mesh solution compared to the
regular mesh results. As seen the present results agree very well with the published numerical
results and the irregularity of the FE mesh affects the solution negligibly.

Problem 5– Cylindrical Panel

This is an impulsively loaded cylindrical panel shown in fig. 7. The explosive loading is
modeled by prescribing initial inward radial velocity of the nodes in the loaded region. This
problem tests the ability of the elements to model single curvature shells. It was modeled
using a FE mesh with 16 elements along the cylinder side and 12 elements along the
circumference. Due to the symmetry only a half of the cylinder was modeled prescribing
symmetric boundary conditions along the symmetry line. Results are compared with
experimental results published by Morino et al. [1] and other FE solution by Belytschko et al.
[4] using a 12×32 element FE mesh. The results are presented on figs. 8 and 9 and show the
excellent performance of the higher order shear deformable shell element.

Problem 6– Spherical Cap

The spherical cap shown in fig. 10 is subjected to suddenly applied pressure. This problem
tests the element performance for doubly curved shells. Both elastic and elastic-plastic
materials a re considered and results are presented on figs. 11 and 12 respectively. At both
elastic and elastic-plastic regimes the behavior pattern is captured well by the developed
element.

Problem 7– Through-Thickness Stress Distribution of a Short Beam

To illustrate the ability of the third order shell element to correctly predict the through
thickness stress distribution, a simple problem is solved. A short cantilever beam of elastic-
perfectly-plastic material is loaded with two shearing forces. The magnitude and position of
the forces is selected to produce plasticity only in a central section of the shell thickness in the
investigated element (element 5 on fig. 13) due to the high transverse shear stresses.
Furthermore, throughout the whole length of the beam there is no section, which is
completely plasticized. Fig. 13 presents the model, FE mesh and material data. The transverse
shear stress distribution in the higher order element and in a shell element based on a first
order shear deformation theory (FOSDT) is presented on fig. 14. As seen from this figure due
to the incorrect distribution of the shear stresses the FOSDT elementalmost completely
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interchanges the elastic and plastic zones throughout the shell thickness. On the other hand,
the results from the higher order element look much more realistic and reliable.

Solution CPU Time

Due to its slightly heavier code implementation and mainly to its considerably smaller critical
time step, the computational efficiency of the third order shell element is not as good as that
of the first order shell elements. The solution CPU time on a SGI Origin 2000 supercomputer
and the critical time step of the explicit time integration scheme are presented in table 4. As
seen from the table the solution times for the simple models herein investigated are very
reasonable, which means that the proposed element can be successfully used in much more
complicated models involving many shell elements and longer simulation duration.

CONCLUSIONS

The test problems herein described were used to assess the performance of the higher order
shear deformable shell element formulated in part I of the present work and implemented into
the explicit FE code DYNA3D. Several standard test verification problems are considered to
evaluate the response of the developed shell with respect to linear, geometric nonlinear,
elastic, and plastic analysis. As seen from the reported results, the accuracy of the newly
formulated element is very good and it can be used in various problems involving shell
structures. It is evident that the third order element has better accuracy potentials compared to
the first order shear deformation elements, especially if it is used in problems involving
nonlinear thickness strain distribution like in plasticity of isotropic shells, or layered
composite or sandwich shell problems.
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Figure 1. Membrane test on a single flat element – geometry,
loading, boundary conditions, and results.

Table 1. Results for Problem 1
Results

Variable
Present Exact % Error

Normal stress,σx –1000 –1000 0

Normal stress,σy –1000 –1000 0

Shear stress,σxy –1000 –1000 0

Normal strain,εx –2.333×10–5 –2.333×10–5 0

Normal strain,εy –2.334×10–5 –2.333×10–5 0.04

Shear strain,γxy –8.667×10–5 –8.667×10–5 0

Displacement,ux2 –4.661×10–5 –4.667×10–5 0.13

Displacement,ux3 –1.333×10–4 –1.333×10–4 0

Displacement,uy3 –2.331×10–5 –2.333×10–5 0.09

Displacement,ux4 –8.667×10–5 –8.667×10–5 0

Displacement,uy4 –2.337×10–5 –2.333×10–5 0.17
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Figure 2. The patch test – geometry, loading, boundary conditions, and results.

Table 2. Results for Problem 2

Results
Variable

Present Exact % Error

Normal stress,σx 9916 10000 0.84

Normal stress,σy 9923 10000 0.77

Normal strain,εx 7.435×10–3 7.500×10–3 0.87

Normal strain,εy 7.449×10–3 7.500×10–3 0.68

Displacement,ux2 1.788×10–3 1.800×10–3 0.67

Displacement,ux3 1.789×10–3 1.800×10–3 0.61

Displacement,uy3 8.976×10–4 9.000×10–4 0.27

Displacement,uy4 8.960×10–4 9.000×10–4 0.44

Displacement,ux5 2.979×10–4 3.000×10–4 0.7

Displacement,uy5 1.493×10–4 1.500×10–4 0.47

Displacement,ux6 1.341×10–3 1.350×10–3 0.67

Displacement,uy6 2.242×10–4 2.250×10–4 0.36

Displacement,ux7 1.192×10–3 1.200×10–3 0.67

Displacement,uy7 5.979×10–4 6.000×10–4 0.35

Displacement,ux8 5.953×10–4 6.000×10–4 0.78

Displacement,uy8 5.976×10–4 6.000×10–4 0.4
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Figure 3. Impulsively loaded beam – geometry, loading, and FE mesh.

Table 3. Results for Problem 3

p = 0.01psi p= 2.85psi
Analysis

Max deflection,in Period,ms Max deflection,in Period,ms

Present 0.02495 5.765 6.231 5.770

Belytschko et al. [3] 0.02454 5.680 6.139 5.640

Analytic 0.025 5.719 – –
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Table 4.Solution CPU Time and Critical Time Step

Present with selectively reduced
integration

FOSDT shell with selectively
reduced integrationTest

CPU Time,s Critical ∆t, µs CPU Time,s Critical ∆t, µs

Problem 3 0.38 3.3 0.13 8.8

Problem 4 1.12 0.84 0.13 6.1

Problem 5 14.0 0.26 1.0 1.8

Problem 6 1.87 0.84 0.18 4.1


