Influence of Contact Parameters on Short-Event Crash Simulation Results
The aim of a vehicle crash simulation is to characterise and quantify the performance of specific regions in terms of energy dissipation, distribution and intensity. Such detailed understanding of the crash event will enable the analysis and prediction of occupant and / or pedestrian injuries. To achieve this, an interacting chain of individual components and systems need to be studied in terms of its energy management and absorption capacity. A study should consider the unique contact interactions between the key components and systems involved. More so, these unique contact interactions have to be numerically captured and formulated in a manner that is faithful to the actual physical event. The premise of this paper is to report initial findings from a study of the sensitivity of short crash events to different contact parameters and conditions. The relevant CAE modelling representations which lead to better agreement between virtual and physical results are explained. The aim is to increase the predictive capability not only of the nominal accuracy of the CAE predictions, but also to fully capture the chronological sequence of events and behaviours during the real short-event crash simulation.
https://www.dynalook.com/conferences/9th-european-ls-dyna-conference/influence-of-contact-parameters-on-short-event-crash-simulation-results/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
Influence of Contact Parameters on Short-Event Crash Simulation Results
The aim of a vehicle crash simulation is to characterise and quantify the performance of specific regions in terms of energy dissipation, distribution and intensity. Such detailed understanding of the crash event will enable the analysis and prediction of occupant and / or pedestrian injuries. To achieve this, an interacting chain of individual components and systems need to be studied in terms of its energy management and absorption capacity. A study should consider the unique contact interactions between the key components and systems involved. More so, these unique contact interactions have to be numerically captured and formulated in a manner that is faithful to the actual physical event. The premise of this paper is to report initial findings from a study of the sensitivity of short crash events to different contact parameters and conditions. The relevant CAE modelling representations which lead to better agreement between virtual and physical results are explained. The aim is to increase the predictive capability not only of the nominal accuracy of the CAE predictions, but also to fully capture the chronological sequence of events and behaviours during the real short-event crash simulation.