Fluid-Structure Interaction involving Close-in Detonation Effects on Column using LBE MM-ALE Method
This paper shares the experiences gathered from studies conducted on the use of *Load_Blast_Enhanced (LBE) keyword to couple empirical blast loads to air domain in Multi-Material Arbitrary Lagrangian-Euler (MM-ALE) environment and on Fluid-Structure Interaction (FSI) computations relating to various aspects of coupling technique in LS-DYNA® via *Constrained_Lagrange_in_Solid keyword for structures composing of mainly solid elements. This paper also presents a case-study in which results from the LBE MM-ALE FSI simulation were compared to experimental data from full-scale blast trials, as well as results from associated pre-test simulations. The pre- test simulations were done using a 2-stage numerical approach which involved applying segmental pressure loadings derived from Computational Fluid Dynamics (CFD) calculations on LS-DYNA Lagrangian models to predict structural response.
https://www.dynalook.com/conferences/9th-european-ls-dyna-conference/fluid-structure-interaction-involving-close-in-detonation-effects-on-column-using-lbe-mm-ale-method/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
Fluid-Structure Interaction involving Close-in Detonation Effects on Column using LBE MM-ALE Method
This paper shares the experiences gathered from studies conducted on the use of *Load_Blast_Enhanced (LBE) keyword to couple empirical blast loads to air domain in Multi-Material Arbitrary Lagrangian-Euler (MM-ALE) environment and on Fluid-Structure Interaction (FSI) computations relating to various aspects of coupling technique in LS-DYNA® via *Constrained_Lagrange_in_Solid keyword for structures composing of mainly solid elements. This paper also presents a case-study in which results from the LBE MM-ALE FSI simulation were compared to experimental data from full-scale blast trials, as well as results from associated pre-test simulations. The pre- test simulations were done using a 2-stage numerical approach which involved applying segmental pressure loadings derived from Computational Fluid Dynamics (CFD) calculations on LS-DYNA Lagrangian models to predict structural response.