x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Finite Element Modeling of Aluminium Honeycomb with Variable Crush Strength and Its Application in AE-MDB Model

Aluminium honeycomb blocks are often to gain differentiated crush strength pattern to represent variable behavior while subjected to static/dynamic deformation. Current article demonstrates the methodology to validate modeling techniques and implementing in a finite element model for the Advanced European Mobile Deformable Barrier (AE-MDB). AE-MDB v3.9 side impact barrier has been investigated in present paper. The FE model is then examined using experimental data from a set of full-scale tests. Component tests have been designed and performed to establish the material characteristics for the FE model to maintain the crush strength pattern within the specified design corridors. The model then has been analysed using LS-DYNA© under certain boundary conditions according to the test specifications and the results have been compared to the physical test data. The barrier has been subjected to the Flat-Wall and Pole tests while the obstacles were blocked against the barrier on a mobile trolley. The methodology is then certified through comparison of the deformation pattern and numerical information with the experiments.