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1 Abstract 

In vehicle development CAE plays crucial role in arriving at optimum structural design to meet various 
vehicle performance targets in different domain such as Crash, NVH, Durability etc. Accurate CAE 
methodology can aid in reducing the number of physical tests & reducing overall vehicle development 
time. However, there are instances where there are gaps observed between test results and CAE 
predictions. These gaps get amplified in crash simulations as the event is highly dynamic and non-linear 
behavior simulation is always challenging. In order to enhance CAE methodology, it was decided to 
incorporate the effect of manufacturing and testing variations in crash CAE simulations. Manufacturing 
process accounts for variations due to inherent variation in material properties, spot weld nugget 
diameter, manufacturing processes such as stamping etc. whereas Physical Testing houses variation 
in barrier positions, test speed etc. within specified tolerance defined by regulatory bodies. These 
variations affect structural performance and negating these issues in early design phase will help to 
arrive at robust structural design. 
In this paper, the CAE based approach for accommodating manufacturing and testing variation in crash 
CAE simulation for arriving at robust BIW design is described. In the current work, unsupervised 
machine learning based CAE approach is used to identify variations in structural performance arising 
out of manufacturing and testing variations. This paper also describes accuracy verification of this CAE 
approach based upon its comparison with quasi-static experimental test.  
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2 Introduction 

Computer-Aided Engineering (CAE) plays a significant role in the development of vehicles. CAE allows 
manufacturers to simulate and analyze various scenarios before physical prototypes are built. This 
reduces the need for expensive and time-consuming physical tests, resulting in cost & overall model 
development time. CAE enables automakers to quickly iterate designs, evaluate performance, and 
make necessary improvements without the need for physical prototypes. CAE tools help to optimize 
vehicle performance by simulating and analyzing various aspects such as NVH, aerodynamics, 
structural integrity in Crash, thermal management, and vehicle dynamics etc.  

CAE simulation becomes utmost important for Passive safety domain by reducing number of 
destructive physical test. Passive safety refers to the measures taken to protect vehicle occupants 
during a crash or collision by providing sufficient survival space and efficiently restraining occupant to 
prevent injuries. CAE aids automakers to simulate different crash scenarios in virtual environment and 
analyzing the results, identify potential safety risks and develop effective countermeasures to minimize 
occupant injuries by optimizing the vehicle structural design and ensuring structural integrity. With 
efficient CAE methodologies vehicle structures can be optimized with effective energy-absorbing 
materials, deformation patterns, and crumple zones to ensure the vehicle can safely absorb and 
dissipate crash energy. 

CAE methodologies are derived by establishing best practices for FE modelling of parts, accurate 
material modelling and defining boundary conditions etc. The standardized methodologies prove to 
provide consistent results and product development can revolve around these methodologies for 
meeting performance requirements. However, instances are there where CAE predictions do not match 
with physical test. Since CAE is a virtual simulation that uses computational models and algorithms to 
predict the behavior and performance of a vehicle before it is physically built and tested however, there 
are possibilities of variation with physical test because of the following reasons:  
 
 
▪ Accuracy of CAE Process/Methodology (modelling, Boundary condition, failure criteria etc.) 
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▪ Variation in Part Manufacturing (Forming, welding, assembly etc.) 
▪ Variation in inherent properties of raw material. 
▪ Variation in physical testing condition. 

The above-mentioned parameters are difficult to control & can affect the crash performance of vehicle 
due to change in deformation modes, abnormal crushing etc. Hence, to counter the manufacturing and 
testing variation it becomes important to arrive at robust BIW design during initial stage of vehicle 
development to get consistent performance even if there are variations in production or test within limits 
decided by OEMs. 

In this study, new approach in Crash CAE simulation methodology is described wherein effect of 
manufacturing variation such as panel thickness variation, spotweld nugget diameter variation along 
with physical testing variation such as test velocity, barrier position are integrated in existing CAE 
methodology to arrive at a robust BIW design.  

DOE based CAE approach creates set of iteration considering variation in manufacturing and testing 
parameters with predefined limits. The output of DOE was used to identify robustness sensitive parts in 
the event of 64kmph frontal offset crash (BNCAP condition).  Manual approach of identifying robustness 
sensitive parts out of set of iterations is tedious and this is where Machine learning was used. ML in 
CAE offers opportunities to enhance the accuracy and efficiency in analysing large datasets. In this 
study DiffCrash tool developed by SIDACT GmbH that uses unsupervised ML method to identify 
robustness sensitive parts was used.  
 

3 Crash CAE Robustness Analysis 

Crash Robustness analysis refers to the process of testing and evaluating the ability of vehicle structure 
to provide consistent performance in the event of crash by handling variability in manufacturing, testing, 
material properties etc. within OEM permitted tolerance limits. Vehicle BIW need to be designed in such 
a way that irrespective of these variations the vehicle performance in terms of structural integrity, energy 
absorption and survival space of occupant is not compromised. Crash robustness analysis helps identify 
vulnerabilities and weaknesses in the design and enables designers to make necessary improvements 
to enhance its crash resilience. 

In this study the BIW robustness for crash performance is evaluated by considering variation in 
manufacturing and Testing. The variations considered for manufacturing are spotweld nugget diameter 
& Sheet metal thickness whereas for Physical testing its test velocity, barrier position & barrier 
orientation.  

 

3.1 Manufacturing Variations 

Spotweld representation in CAE is done using Hexahedral elements to capture the actual 
behavior of spotweld. The size of spotweld in CAE is taken as reference from design data and all the 
spotwelds are modelled with standard diameter as per OEM standard. However, physical spotweld 
diameter may vary depending upon manufacturing parameters such as weld current, welding time, hold 
time, electrode force etc. It further depends upon the fusion of different grades of material. Cross section 
comparison of spotweld in CAE and physical vehicle is shown in Fig-1. 

 

 
 

Fig.1: CAE Vs Physical Spotweld section Comparison 

From Fig-1 shows cut-section of 3ply spotweld in CAE and physical model. It can be seen that in CAE, 
spotweld diameter is constant whereas in physical spotweld the diameter of spotweld is maximum at 
the center and reduced on top and bottom surfaces. Change in spotweld nugget diameter results in 

CAE Spotweld nugget diameter Physical spotweld nugget diameter 
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variation the spotweld strength. As BIW consists of numerous spotwelds, these variations in nugget 
diameter can lead to discrepancies in CAE and Test results.  

Another aspect of manufacturing variance is steel sheet thickness from raw material supplier. 
Steel sheet thickness can vary from base thickness with tolerance specified by OEM. Conventional CAE 
model is generated as per design thickness. Similar to spotweld nugget diameter variation, variation in 
BIW panel thickness can also lead to gap between Test & CAE results. 

 

3.2 Physical Test Variations  

In physical tests, regulatory bodies permit permissible tolerance for deviation in test. These include 
misalignment of barrier, Impact velocity etc. Figure-2 shows the permissible limits of ODB barrier 
misalignment limit in lateral and vertical direction as specified in BNCAP.  

 

 

 

 
 
 

 

Fig.2:  ODB Barrier position variation as per BNCAP 

 

Conventional CAE simulation is performed with standard barrier position & velocity as specified by 
regulation. These variations in test condition leads to variation in impact loads which result in variation 
in deformation mode and magnitude of deformation resulting in overall differences in Test and CAE. 
 

4 Numerical Robustness Analysis – Set up 

Studying the effect of individual variation and its effect was possible. However, to study the combined 
effects, manual method is not practical. Combining these variations will lead to infinite numbers of 
combinations and studying these combinations manually was cumbersome & hence it was decided to 
perform DOE study with appropriate sampling approach to maximize the utilization of variation. In this 
study Latin Hypercube sampling (LHS) approach was used for sampling. Latin hypercube sampling is a 
statistical technique used for sampling from a multidimensional parameter space. Latin hypercube 
sampling ensures the following:  

 

• Entire parameter space is sampled more evenly, reducing the risk of missing important regions.  

• Minimizes the sampling error by ensuring that each parameter is sampled multiple times.  

• LHS requires fewer samples than traditional random sampling methods to achieve the same level of 
accuracy, making it more resource efficient. 

Sl. No Variable Base Min Variation Max Variation 

1 Spotweld Nugget diameter (mm) A -E% (A) + E% (A) 

2 Panel Thickness (mm) B -F% (B) +F%  (B) 

3 Impact Velocity (Kmph) 64 63 65 

4 Barrier Lateral position (mm) C -20 +20 

5 Barrier vertical position (mm) D -25 +25 

Table 1: Parameters considered for DOE Study 

 
Table -1 represents some of parameters considered in DOE study for evaluating the effect of 

variation. The variation level was defined considering permissible tolerance defined by OEM in 
production processes and tolerances defined by regulatory bodies (BNCAP) for physical test. Using an 
in-house developed tool, DOE setup was done. The number of iterations were determined to build 
desired database so that ML based tool used for post-processing can accurately identify robustness 
sensitive parts and design flaws. Figure-3 shows the representation of DOE model for vehicles 
evaluated under BNCAP condition for 64kmph ODB crash. 
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Fig.3: DOE setup for Robustness analysis 

 
In this DOE, the variation in spotweld nugget diameter is simulated by varying spotweld strength. Panel 
thickness variation is applied to nodal thickness as per OEM specified tolerance in CAE. These DOE 
iterations are solved using LS-Dyna solver and post-processing of DOE results for robustness sensitive 
part identification and root cause are performed using DIFFCRASH software. Evaluation of the 
robustness analysis was based on deformation modes of long members, Dash panel intrusions,  
acceleration profile etc.  
 

4.1 Numerical Robustness Analysis-Result Processing 

DOE iteration creates significant data set and analyzing these data to arrive at meaningful 
conclusions manually is tedious. To expedite this process an unsupervised ML approach was preferred. 
In unsupervised learning, the machine learning algorithms are provided with instances without their 
respective labels, here the algorithm aims to identify hidden patterns in the dataset. Unsupervised 
learning algorithms can be used to classify, label and group the data points contained within data sets 
without requiring any external guidance in performing a particular task. Advantages of applying 
unsupervised ML in CAE process are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this study, unsupervised ML tool i.e. DIFFCRASH was used to evaluate the DOE outputs. 
DIFFCRASH is a variation visualization tool developed by SIDACT GmbH. DiffCrash allows to identify 
variation in modes from the set of data. It further aids engineers to identify the time state from which 
variation initiates. DiffCrash works on a mathematical tool called Principal Component Analysis (PCA). 
PCA works in following steps:  
 

Clustering • Group similar CAE simulations of large datasets aiding engineers

Reduce manual effort
• Automates the analysis process reducing manual effort in analysing
larger data set

Pattern Discovery • Identify patterns in data set

Irregularity Detection
• Identify irregularity in CAE data, which is leading to potential issues
in designs

Dimensionality
Reduction

• Dimensionality reduction techniques like PCA can simplify data while
retaining important information.
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Before getting into DiffCrash, it was necessary to gauge the amount of variation in vehicle structure. 
Quick reference for variation was drawn by plotting vehicle acceleration vs time plots for all set of 
iterations as shown in Figure-4. 

 
 

Fig.4: Result summary of DOE iterations  

 
From Figure-4a it can be seen that vehicle structure is experiencing significant variation in acceleration 
profile. These variations in vehicle pulse  indicates variation in deformation pattern of vehicle structure.  

From Figure-4b, it can also be seen that dash intrusions had significant variations. This 
variations in dash intrusion adversely affects occupant response leading to gap in CAE prediction and 
physical test output. Dash intrusions are primarily governed by deformation of front long member and 
powertrain interaction with dash panel. Since powertrain is mounted on front long member, the 
deformation mode of long member becomes critical. Using DiffCrash, the long member deformation 
modes were analyzed. 
 

 
 
 
 
 
 
 
 
 
 

 
 

 

Fig.5: Diffcrash analysis of long member deformation mode 

 
DiffCrash reduces dimensions of all nodal coordinates by using PCA approach.  The PCA method helps 
to visualize extreme results from the set of CAE simulations. Maximum information of variation in data 
set is mapped into first principal component. From Figure-5a, it can be seen that the first principal 
component i.e.mode-1 is having maximum contribution to the variation. Therefore, it was possible to 
estimate the cause of variation by checking the deformation of the two extreme cases of the first principal 
component. 

Principal component analysis

Creating Covariance matrix Calculate Eigen vector Calculate Eigen values

4a. Acceleration Vs Time plot 4b. Dash Intrusion Vs Time plot 

5a. Importance factor Vs Mode plot 5b. Scatter plot for long member 
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Figure-5b shows scatter plot for DOE iterations plotted with two major principal components i.e. Mode-
1 & Mode-2. The abscissa of scatter plot represents mode-1 & ordinate represent mode-2. Iteration at 
extreme end of abscissa i.e. mode-1 in Figure-6 carries maximum variation and those are iteration X & 
Y . These two iterations were studied to evaluate the variation levels along with root cause. 
The long member deformation mode in iteration X & Y is shown in Figure-8. 
 
 
 
 
 
 
 
 
 
 
 

Fig.6: Long member deformation mode comparison 

Bending of long member is very low in iteration X compared to iteration Y. It can be seen that in iteration 
X, long member undergo axial compression thus limits overall bending whereas in iteration Y, front end 
of long member does not get axial crushing rather forms a Z-shaped lateral bending profile. 

In order to stabilize the mode of long member, it is necessary to identify the origin of variation. 
DiffCrash offers method to identify origin of variation by plotting mode over time state plot. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig.7: Mode Vs Time state plot 

Figure 7 shows the mode-1 variation with respect to time state. Till state A,  there is no variation in long 
member deformation. At state A, variation in long member mode initiates and at state B variation has 
reached maximum value. 
 
 
 
 
 
 
 
 
 
 
 

Fig.8: Variation in long member mode w.r.t. time state 

Figure-8 shows long member deformation mode at time state A & B.  At time state A, front end 
of long member starts to deform in iteration X whereas in iteration Y no deformation is observed. At time 
state B, the variation in deformation mode was at peak and it can be seen in figure-8, the long member 
bending location & magnitude in iteration X & Y are different. These variations in long deformation mode 
leads to variation in dash intrusion and hence it becomes very important to stabilize long member 
deformation modes. To identify the root cause for variation, DiffCrash offers extension of PCA approach 
called DPCA (Difference Principal Component Analysis).  DPCA uses the correlation matrices created 
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during PCA to identify relation in variation of target part with trigger part based on degree of correlation 
between target part and trigger part. 
 
 
 
 
 
 
 
 
 
 
 

Fig.9: DPCA method for variation analysis [6] 

Figure-9 shows how the nodal coordinate variation of trigger part is correlated with nodal coordinates 
variation of target part. Based on this principal, root cause for variation in long member was identified. 
DiffCrash DPCA results show high correlation between long member (target part) deformation variation 
& deformation of long member front end components (trigger part).  

 

 
 
 
 
 
 
 
 
 

Fig.10: Front end variation contribution in long member mode variation 

Figure-10 indicates contributions of variation in long member front end components to variation 
of long member mode. It can be seen that by controlling variation of long member front end components, 
variation in long member deformation mode can be reduced by 70%. The variation in deformation of 
front end could be because of variation in panel thickness, spotweld strength, test conditions but design 
for long member must be such that it gives consistent results. With this objective countermeasure study 
was conducted. 
 

5 Numerical Robustness Analysis-Design Improvement 

In order to stabilize long member deformation mode, the entire long member is categorized into two 
zones shown in Figure-11. 
 
 
 
 
 
 
 
 

Fig.11: Design improvement for long member mode stabilization   

 
Zone -1: Improve crushing of front end to reduce overall load transferred to long member rear end and 
initiate long member bending from design location.  
 
Zone -2: Long member bending location stabilization. Long member bending from design location will 
help to reduce variation in dash intrusions which will help to achieve robust design of occupant 
compartment. 
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Design improvement of long members includes design features such as beads/crush initiators, addition 
of reinforcement for controlling the collapse and bending location. The improved design was further 
evaluated for robustness performance and results were compared. 
 

6 Numerical Robustness Analysis-Result Analysis with Improved Design  

Improved design was further evaluated with all the variation conditions. The results of DOE were further 
studied using DiffCrash. Figure -12 shows the long member deformation mode comparison of initial 
design and improved design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12: Long member deformation mode comparison   

With improved design the deformation mode of long member has enhanced. The front end of the long 
member was getting crushed and bending at rear end of long member was observed at design location.  
 

 

Fig.13: Long member variation comparison Initial Vs Improved design 

 
With improved design, significant reduction in long member deformation variation is achieved as shown 
in Figure-13. The design changes made on long member design resulted in robust performance of long 
member and same can be visualized in Figure-14. 
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Fig.14: Correlation cluster for long member Initial Vs Improved design 

Figure-14 shows correlation cluster for long member deformation mode. It can be seen that deformation 
mode in initial design of long member was scattered whereas with improved design, modes are clustered 
together with very less variation. Further improvement in reduction of variation was not required in this 
study as the improved design had no concerns with respect to survival space for occupant protection 
and other crash performance requirements.  
This numerical robustness analysis methodology has helped to achieve robust BIW design. In order to 
implement the methodology in model development it was necessary to validate the CAE methodology 
by correlating the same with physical test to assess the accuracy of overall process. 
 

7 Numerical Robustness Analysis-Methodology Validation 

 
For validating the CAE methodology, it was decided to perform an experimental quasi-static test 
considering local area of BIW as it was not feasible to build complete BIW with above mentioned 
variation and cost associated with vehicle level destructive test for methodology validation. Local area 
of BIW was made with production variation of panel thickness based on steel sheet thickness received 
from supplier, spotweld nugget diameter by altering weld parameters and same is shown in Figure 15 
 
 
 
 
 
 
 
 
 
 
 

Fig.15: BIW with production variance for experimental test 

The BIW structure was tested as per standard seat belt anchorage test condition. A similar test was also 
performed on BIW structure with standard production configurations without variation. Both these BIW 
structures responded differently to the test. The BIW with production variation resulted in panel crack 
whereas BIW without variation sustained the load without any crack or spotweld rupture as shown in 
Figure-16. From the experimental test it was evident that variation in production and test variation can 
result in substantial variation in vehicle response. 
 

Fig.16:  BIW deformation variation in experimental test 

 
To validate the CAE methodology, CAE model was built for simulating the experimental test. In the CAE 
model production and test variations were applied using DOE approach as described in earlier section 
of paper and all DOE iterations were solved using LS-Dyna.  The DOE iterations once solved were 
processed using DiffCrash which helped to identify iterations which produced similar results to the 
experimental test.  Out of X iterations performed, several iterations shown panel crack very much similar 
to the test.   Figure-17 shows panel crack observed in CAE simulation. 
 

Area in BIW considered for variation study  
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Fig.17: Experimental Test Vs CAE deformation comparison 

CAE methodology accuracy is validated with very high correlation of CAE results with physical test and 
gives confidence for implementation of CAE process in product development cycle. 
 

8 Summary 

The robustness analysis CAE methodology mentioned in this paper can be used to effectively identify 
critical areas in vehicle which require strict production control and monitoring. During design phase 
additional provisions to prevent failures in physical test can be accommodated by using this CAE 
robustness analysis methodology.   
 
Unsupervised ML approach effectively reduced human effort in processing large data set. DiffCrash 
software was efficient in identifying patterns in set of data, variation origin and root cause of variation. 
 
This CAE methodology help in developing robust BIW structure to meet crash performance with 
production and test variation as per OEM production and BNCAP test tolerance limits.  
 

9 Future Scope 

The robustness analysis CAE methodology mentioned in this paper can be further improved by 
considering variation in material properties such as yield strength, failure strain etc. and Variation in 
spotweld position. 

Current study was limited to evaluate structural robustness performance. The scope of this 
methodology can be further increased to investigate occupant injury mechanism based on variation in 
occupant position, restraint system configuration etc. 
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