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Abstract 

Viscoelastic behaviour of a material is often used as a probe in the field of material science since it is 
sensitive to the material’s chemistry and microstructure. The behaviour enables understanding of the 
quantity of energy absorbed by the material’s internal structure and the energy dissipated to the 
surroundings. The viscoelastic properties can be determined experimentally by tests such as stress 
relaxation, creep, or Dynamic Mechanical Analysis (DMA). 

Numerical modelling of rubber-like viscoelastic materials in terms of energy dissipation and energy 
storage is usually done using hyperelastic and viscoelastic constitutive models. Hyperelastic material 
model captures the material’s nonlinear elastic behaviour with no time dependence. Viscoelastic model 
describes the material response as a function of time, frequency, temperature, and contains an elastic 
and viscous part. 

This paper presents the dynamic characterization of rubber in terms of hyperelastic and viscoelastic 
constitutive models. The parameters of the constitutive models are determined from the uniaxial tensile 
and stress relaxation tests. These parameters are used for the numerical model of the rubber components 
and the accuracy of the characterization is presented by means of a numerical case study. 

Capabilities of different constitutive models available in LS-DYNA to predict viscoelastic behaviour of 
rubbers viz., MAT76 (general viscoelastic), MAT77_H (hyperelastic rubber) and MAT77_O (Ogden rubber) 
are compared. Additionally, the recent developments under MAT_ADD_INELASTICITY are discussed and 
are compared with the general viscoelastic model. 
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Introduction 

Elastomers are widely used in many automotive components such as seals, mounts, suspension, 
gaskets, grommets, bushing, hoses, etc., primarily for their hyperelastic properties. In contrast to 
metals and some thermoplastic materials, elastomers exhibit nonlinear stress-strain behavior 
under application of load. They can undergo large deformation under load application and return 
to their original shape upon removal of the load. This behavior is due to the long coiled polymer 
chains with a high level of cross linking. Upon application of load, the chains stretch greatly and 
regain their original shape upon load removal [1]. 

Elastomers, in addition to their hyperelastic nature, also exhibit viscoelastic behavior. The 
viscoelastic response of an elastomer is often used as a probe in the field of material science since 
it is sensitive to the material’s chemistry and microstructure. Elastomers such as natural rubber 
and Ethylene Propylene Diene Monomer (EPDM) for example, exhibit viscoelastic and hyperelastic 
behavior. Under application of constant strain (deformation) the stress response(reaction force) 
gradually reduces as a function of time, as evident in a stress relaxation experiment. Conversely, 
upon application of constant stress (force) the strain (deformation) gradually increases as a 
function of time, as evident in a creep experiment. It is imperative that the material 
characterization and the numerical modeling procedure encompass the hyperelastic and 
viscoelastic properties of elastomers. Failure to do so may result in an underprediction of the 
material’s compliance. 

Modeling of the linear and non-linear behavior of elastomers is essential for accurate 
representation of these materials in Finite Element (FE) simulation. Attempts by Bergström and 
Boyce show that mechanical behavior can be decomposed into two parts. The first part is an 
equilibrium network corresponding to the state approached in long-time stress relaxation tests, 
and the second part is the time dependent deviation from the equilibrium [1]. Reese and 
Govindjee proposed a model based on a multiplicative decomposition of the deformation gradient 
into an elastic and an inelastic part [2], a continuation of work proposed by Lubliner [3]. Currently, 
there are different approaches to characterize the viscoelastic behavior of elastomers. Arruda and 
Boyce [4] used an 8-chain constitutive model to successfully capture the uniaxial tension, biaxial 
extension, uniaxial compression, plane strain compression and pure shear. The model accurately 
captures the cooperative nature of network deformation while requiring only two material 
parameters, an initial modulus and a limiting chain extensibility. A mathematical model has also 
been proposed for relaxation modulus and its numerical solution. The model formula is extended 
from sigmoidal function considering nonlinear strain hardening [5]. There are other models that 
have presented the dashpot’s stress as a nonlinear function dependent on the strain rate [6]. 
Qinwu Xu et al. [7] have used an elastic network–viscous medium system with five model 
parameters to represent general materials considering nonlinear strain hardening. Subsequently 
they developed a robust numerical algorithm to implement the model for simulating dynamic 
responses. Koontz et al. [8] had fitted stress relaxation data in Matlab with a Prony series using a 
unique parameter input method developed specifically for this analysis. In continuation with the 
cited studies, a more methodical and practical approach to modelling viscoelastic properties of 
elastomers in LS-DYNA and the capabilities of different constitutive models are discussed. 
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Fundamentals of Viscoelasticity 

Viscoelasticity is a fundamental property exhibited by materials that display elastic and viscous 
deformation when subjected to various loading conditions. Unlike linear elastic materials, the 
stress-strain response for viscoelastic material is history-dependent, that is the stress is not just a 
function of the current strain, but also of the rate of change in strain or strain rate.  

The presence of viscoelasticity in a material is obvious in a stress relaxation experiment as shown 
in Figure 1. An elastomer specimen is stretched to a certain strain instantaneously (εo), the internal 
stress (σo) generated due to the strain is recorded as a function of time. The entangled cross linked 
polymer chains in the elastomer resist the strain with high stress initially [9]. As time progresses, 
the chains have sufficient time to untangle themselves and stretch leading to reduction in stress. 
After a certain time, the reduction in stress becomes insignificant leading to a stress state called 
equilibrium stress(σ∞). The instantaneous and equilibrium relaxation moduli are calculated as 
shown in Equations 1 and 2, respectively. 

𝐸𝐸(𝑡𝑡 = 0) = 𝜎𝜎𝑡𝑡=0
𝜀𝜀0

                                                                   (1) 

𝐸𝐸(𝑡𝑡 = ∞) = 𝜎𝜎𝑡𝑡=∞
𝜀𝜀0

                                                                (2) 

 

Figure 1: Stress and strain response for a stress relaxation experiment 

Stress relaxation experiments were used in this study to calibrate the viscoelastic material models 
and will be discussed in more detail in subsequent sections of the paper. 

Numerical Modelling of Viscoelastic Materials 

Hyperelastic material modelling 

A hyperelastic material is defined by its elastic strain energy density, W which is a function of the 
elastic strain state. The formulation provides a non-linear relation between the stress and strain 
as shown in Equation 3. 

𝑊𝑊 =  ∑ ∫ 𝜎𝜎𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝜖𝜖𝑖𝑖𝑖𝑖
0

3
𝑖𝑖,𝑖𝑖=1     (3) 

The strain energy density function can also be expressed as a function of principal stretches (λi) or 
invariants (Ii) of left Cauchy-Green strain tensor (B), as shown in Equation 4. Stress-strain relations 
are derived by differentiating the strain energy density function. 

W = W (F) = W (λ1, λ2, λ3) = W (I1, I2, I3)                                               (4) 



Several hyperelastic material models have been developed to predict the behavior of elastomers. 
Popular material models used in commercial finite element(FE) solvers are Mooney-Rivlin, Neo-
Hookean, Ogden, Yeoh, and Arruda-Boyce model.   

The present work utilizes Ogden hyperelastic material model to define the behavior of the tested 
natural rubber. The Ogden hyperelastic model [10] derives the strain energy density function, W 
in terms of generalized strain. The model is based on the three principal stretches (λ1, λ2, λ3) and 
2N material constants, where N is the order of polynomial that constitutes the strain energy 
density function, defined as   

𝑊𝑊 = ∑ 𝜇𝜇𝑖𝑖
𝛼𝛼𝑖𝑖

𝑁𝑁
𝑖𝑖=1 �𝜆𝜆1

𝛼𝛼𝑖𝑖 + 𝜆𝜆2
𝛼𝛼𝑖𝑖 + 𝜆𝜆3

𝛼𝛼𝑖𝑖 − 3� +  ∑ 1
𝐷𝐷

𝑁𝑁
𝑘𝑘=1 (𝐽𝐽 − 1)2𝑘𝑘                              (5) 

In Equation 5, μi and αi are the material constants, such that the stability condition μi αi > 0 for all 
i=1,N is satisfied. J is the determinant of the strain gradient tensor, and D is a material constant 
related to the bulk modulus.   

Viscoelastic modelling 

The viscoelastic material is modeled as the combination of viscous and elastic elements. The 
elastic element is denoted by a spring (E) which follows Hooke’s law, and it returns to its original 
shape (zero strain) upon removal of stress. The response is instantaneous within the elastic 
element. The viscous element is denoted by a dashpot (η). The viscous element stress is 
proportional to the strain rate. A popular viscoelastic model to represent elastomers is the 
Maxwell model where a spring and a dashpot are connected in series, as shown in Figure 2a.  

        

(a)                                                                        (b) 

Figure 2. Representation of a) Maxwell model, b) generalized Maxwell model. 

Upon application of strain, the spring element deforms instantaneously providing the initial stress 
reported in a stress relaxation test. The dashpot needs additional time to deform. As time 
progresses, the dashpot deforms and compensates for the deformation in spring, thus leading to 
a zero stress. However, the stress in a stress relaxation test for an elastomer never reaches zero.  

Overcoming the limitations of the Maxwell model, which predicts a zero stress at an infinite time, 
a generalized Maxwell model takes into account that relaxation does not occur at a single time but 
at a distribution of times which may be due to the presence of polymer chains of varying lengths. 
The smaller chains contribute to quicker relaxation while longer chains contribute to longer 
relaxation times. The generalized Maxwell model illustrates this by having as many spring-dashpot 
elements as are necessary to accurately represent the distribution, as shown in Figure 2b. The 



relaxation function of a generalized Maxwell model is typically modeled using Prony series when 
the number of elements, N ≥ 1. 

Prony Series 

The viscoelastic behavior of a material can be represented by combining a hyperelastic model with 
a suitable mathematical model to add the effect of time. The mathematical model implemented 
in LS-DYNA is shown in Equation 6, 

𝜎𝜎𝑖𝑖𝑖𝑖 =  ∫ 𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡 − 𝜏𝜏) 𝜕𝜕ℰ𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕

𝑡𝑡
0 𝜕𝜕𝜏𝜏                                                         (6) 

where Gijkl is the relaxation function for the different stress measures. An important point to 
consider here is that this viscoelastic stress is added to the stress determined by the chosen 
hyperelastic material model.  

The relaxation function G(t) can be represented as a Prony series, as shown in Equation 7. 

𝐺𝐺(𝑡𝑡) =  ∑ 𝐺𝐺𝑚𝑚𝑒𝑒−𝛽𝛽𝑚𝑚𝑡𝑡𝑁𝑁
𝑚𝑚=1                                                                (7) 

In Equation 7, Gm(t) are the time dependent shear moduli. The unknown coefficients, Gm and βm 
can be obtained by choosing the number of Prony series terms and fitting Equation 7 to the data 
from a relaxation test. Conversely, the curve fitting algorithm available in LS-DYNA can also be used 
to fit the Prony series coefficients, as discussed in later sections. Theoretically, the experimental 
data will be more accurately fitted with a higher number of Prony series terms. However, the large 
number of terms adds computational cost and for most applications 4-6 Prony series terms 
provide high accuracy of the model.  

Experiment Details 

Material Details 

For this study, a natural rubber with a Shore A hardness of 50 and a density of 1200kg/m3 was 
chosen. Natural rubbers are extensively used in automotive industry and have a wide range of 
applications due to their elasticity, tensile strength, abrasion and chemical resistance. They are 
commonly used in tires, seals, gaskets, and suspension components. Natural rubbers are also 
biodegradable and are a renewable resource making them environmentally friendly compared to 
synthetic alternatives. 

Stress Relaxation Testing 

Natural rubbers are typically viscoelastic and exhibit a stress relaxation behavior when exposed to 
a constant load over a period of time. Stress relaxation tests were performed at multiple strain 
levels using ASTM D412 Die D [11] tensile specimens. The specimens are pulled in tension at a 
constant speed until the desired strain has been reached. Subsequently, the specimens are held 
at the desired strain for 2000s. The force (stress) is recorded as a function of time. Tested strain 
levels include 0.05, 0.1, 0.25, 0.5 and 0.75 mm/mm.  

 

 



Test Results 

Stress relaxation test results for all tested strain levels are shown in Figure 3. The normalized test 
data shows high instantaneous stress at time t=0. The stress reduces as the time increases and 
reaches an equilibrium before the end of test.  

 

Figure 3. Stress vs. time for strain levels (mm/mm) 0.05, 0.10, 0.25, 0.50, 0.75 

Material Modeling 

The material models in LS-DYNA, viz. MAT76 (general viscoelastic), MAT77_H (hyperelastic 
rubber) and MAT77_O (Ogden rubber) are compared in this study.  

MAT77_O (Ogden Rubber) 

The parameters considered for hyperelastic-viscoelastic simulation using MAT77_O material 
model are listed in Table 1. 

Card 1 
MID Material identification ID 
RO Mass density 
PR Poisson’s Ratio 
N Order of fit for hyperelastic part (Ogden) for LCID1 
NV Number of Prony series terms for viscoelastic part 

(Maxwell) for LCID2 
Card 3a 
SGL/SW/ST Specimen gauge length/Specimen 

width/Specimen thickness 
LCID1 Load curve ID (engineering stress as function of 

engineering strain if SGL/SW/ST is set to 1) 
DATA Type of experimental data 
LCID2 Load curve ID of the stress relaxation curve 
Table 1. Parameters for Ogden rubber model (MAT77_O) [12] 



Among the applicable parameters, mass density, Poisson’s ratio, and LCID1 can be derived from 
the test data. Hyperelastic Ogden order(N) can be set from 1-8, however order of 2-3 provides 
best fit in most cases. Number of Prony series terms (NV) can be set depending on the required 
fit with relaxation test data. SGL/SW/ST can be set to unity if engineering stress and engineering 
strain data is entered in the LCID1 field. Type of experimental data must be entered in DATA field 
(such as 1 - Uniaxial tension, 2 - Biaxial tension, 3 - Pure shear). 

A critical aspect should be considered while entering the data for LCID1. In LS-DYNA, the 
viscoelastic stress is added to the hyperelastic stress as shown in Equation 8.  

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 =  𝜎𝜎ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑡𝑡𝑦𝑦𝑡𝑡𝑖𝑖𝑦𝑦 + 𝜎𝜎𝑣𝑣𝑖𝑖𝑦𝑦𝑦𝑦𝑡𝑡𝑦𝑦𝑖𝑖𝑡𝑡𝑦𝑦𝑡𝑡𝑖𝑖𝑦𝑦                                             (8) 

Figure 4, reproduced from the LS-DYNA manual [12], illustrates this implementation. Purely 
viscoelastic part decays over time to zero strain, as shown in Figure 4a. When hyperelastic and 
viscoelastic components are added together, as shown in Figure 4b, the resulting behavior 
corresponds to the behavior of the tested material (Figure 3) for which the equilibrium stress is 
not zero. Additive nature of the hyperelastic-viscoelastic model implementation requires that the 
engineering stress vs. engineering strain curve representing the hyperelastic part of the model 
(LCID1) must correspond to the equilibrium stress (stress at 2000s – refer Figure 3 at x=2000s).  

 

Figure 4. Contribution of a) viscoelastic and b) viscoelastic + hyperelastic components in 
MAT077_O 

In addition, the viscoelastic implementation with Prony series requires that the stress values 
recorded during the stress relaxation experiments are scaled before they can be used in the 
material model. The ordinate of the input curve LCID2 thus represents the effective stress/3x 
effective strain from the tests. For example, to provide stress relaxation as a function of time for a 
strain level of 10%, the effective strain is 0.1; considering the elastomer to be nearly 
incompressible, the ordinate has to be scaled by 1/(3*.01) i.e., 3.33. 

Upon fitting all model parameters from the test data shown in Figure 3, the material model is 
validated by comparing the test results with the results of the simulation of the stress relaxation 
test. The finite element model of the ASTM D412 Die D dog bone specimen used for the model 
validation is shown in Figure 5. A hexahedral mesh was used to represent the specimen. Shell 
elements were not considered due to the complex geometry of the actual part in the vehicle as 
the complex shapes are better captured by solid elements. The moving end is displaced until the 



strain corresponding to the tested strain is attained and is then held at that fixed displacement for 
the duration of the simulation. The opposite fixed end is fully constrained.  

 

Figure 5. ASTM D412 Die D [11] tensile specimen FE model meshed with hexahedral elements.  
 

The section force from the plane in the middle of the gauge area of the specimen (Figure 5) is used 
to compute the stress from the simulation. The stress response from the simulation is plotted 
against the test data for two strain levels in Figure 6. It is evident that a good correlation between 
test and simulation was achieved for 0.05 and 0.10 strain levels. Results for other strain levels have 
been omitted for brevity. 

 

 

Figure 6. Test-LS DYNA correlation for tested strain levels 



MAT76 (General Viscoelastic) 

MAT76 material model provides a general viscoelastic Maxwell model having up to 18 Prony series 
terms. The methodology to provide input relaxation stress data is the same as for MAT77_O, 
however the hyperelastic stress calculation based on the strain energy density is not available in 
this material model. Instead, a linear true stress-true strain relationship is assumed and the 
viscoelastic stress is added to the linear stress function. The stress relaxation prediction from 
MAT76 material model is the same as from the MAT77_O model since both material models are 
based on the Maxwell model. A comparison between stress relaxation response of MAT77_O and 
MAT76 is shown in Figure 7. 

MAT77_H (Hyperelastic Rubber) 

The implementation of viscoelasticity in MAT77_H is similar to the implementation in MAT77_O, 
however the two material models differ in the way they characterize hyperelastic part of the total 
stress. Up to six parameters can be fit to the hyperelastic potential function of MAT77_H while 
MATT_O allows for the Ogden potential function of order 8 (16 parameters). It is interesting to 
note that, if fitted with two coefficients only, the hyperelastic part of MAT77_H reduces to the 
Mooney-Rivlin model. MAT77_H material model offers an enhanced capability when compared to 
MAT76 material model, as it can predict nonlinear monotonic stress-strain response. However, 
when it comes to predicting the viscoelastic response MAT77_O, MAT77_H and MAT76 exhibit 
similar behavior. Figure 7 provides a comparison of the stress relaxation responses of MAT77_H, 
MAT77_O, and MAT76 models with the test data. 

 

Figure 7. Comparison between MAT77_H, MAT77_O and MAT76 material models 

In the absence of the hyperelastic stress component, the viscoelastic stress component exhibits 
complete decay to zero for all material models under consideration (MAT77_H, MAT77_O, 
MAT76), as demonstrated in Figure 8 for MAT77_H. 

 



 

Figure 8. Stress relaxation in the absence of hyperelastic component of total stress 

MAT_ADD_INELASTICITY 

MAT_ADD_INELASTICITY is an add-on to the existing elastic material models such as MAT_ELASTIC, 
for example. The model provides options to add isotropic hardening plasticity, creep, and 
viscoelasticity to an elastic material model. The relevant material parameters to model 
viscoelasticity using MAT_ADD_INELASCITIY are shown in Table 2.  

Card 1 
MID Material identification ID 
NIELINKS Number of Maxwell links 
Card 4 
NIELAWS Number of elasticity laws (such as viscoelasticity) 
WEIGHT Weight of each Maxwell link 
Card 5 
LAW Isotropic hardening plasticity/creep/viscoelasticity 
MODEL Hypoelasticity or Hyperelasticity in case of 

elastomers 
Table 2. Parameters for MAT_ADD_INELASTICITY [12] 

Among the applicable parameters, MID needs to be set to the material ID of the elastic or 
hyperelastic material model. NIELINKS is the number of Prony series terms used to fit the 
viscoelastic part of the model. NIELAWS can be set to 1, if viscoelasticity is the only inelasticity to 
be predicted by the model. Weight for each Maxwell link is entered as shown in Equation 9. 

𝑤𝑤𝑖𝑖 = 𝐺𝐺𝑖𝑖
𝐺𝐺

                                                                           (9) 

Gi is the shear modulus of each Maxwell link, G is the shear modulus of the material model as 
defined in the elasticity part.  



The two material models shown in Figure 9a and Figure 9b are the same. The behavior of 
MAT_GENERAL_VISCOELASTIC is similar to MAT_ELASTIC with MAT_ADD_INELASTICITY option. 
Similar approach can be used to model multiple Maxwell links to represent viscoelasticity with any 
applicable material model. 

 

Figure 9. (a) MAT_ELASTIC with MAT_ADD_INELASTICITY, (b) MAT_GENERAL_VISCOELASTIC 

Summary/Conclusion 

In this work, a natural rubber used for automotive applications has been tested for its viscoelastic 
properties using a stress relaxation test at multiple strain levels and the results were presented. 
Three material models available in LS-DYNA viz. MAT76 (general viscoelastic), MAT77_H 
(hyperelastic rubber) and MAT77_O (Ogden rubber) were compared in this study to characterize 
the hyperelastic and viscoelastic behavior of elastomers. The viscoelastic material models follow 
generalized Maxwell approach and have a viscoelastic and a hyperelastic component. In the 
absence of the hyperelastic stress component, the viscoelastic stress component exhibits 
complete decay to zero for all material models under consideration. Steps to determine the Prony 
series terms and its usage with hyperelastic material model MAT77_O were reviewed. General 
discussion on MAT_ADD_INELASTICITY was also presented, and an example of its similarity with 
MAT76 (general viscoelastic) was provided. 
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