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1 Abstract 
Deep learning methods have had a significant impact on design process in the recent past. SimAI is a 
deep learning-based AI platform that has shown to be very effective in approximating the behavior of 
fluid flow applications, especially fully developed steady state flows simulated by CFD solvers. The 
underlying neural networks in SimAI are very versatile and can be easily extended to structural 
applications as well. This study aims at demonstrating the applicability of SimAI for non-linear transient 
structural simulations like pedestrian protection. We start with a simple Tube Crush model to 
demonstrate the use of SimAI to predict the deformed shape of the Tube at any time instance. We then 
train a model on different Tube shapes to show SimAI’s ability to learn from non-parametric geometry. 
Finaly, we demonstrate how SimAI can be used to accelerate Ped-pro evaluations. The NCAC Accord 
model is used to generate 96 training points. This dataset is used to train a SimAI model and the resulting 
trained model can predict the full field hood deformation as well as the HIC value for the corresponding 
hit location within 10% relative error on any point on the vehicle hood. SimAI is many orders of magnitude 
faster in predicting the HIC than direct numerical simulation and hence can be very effective in 
evaluating designs upfront in the vehicle development process 

2 Introduction 
With shrinking automotive development timelines, CAE has been a very integral part of vehicle design 
process in the past couple of decades. Vehicle safety is one of the most critical paths in this process. 
With new safety regulations being added in multiple regions every year, virtual analysis has become a 
reliable tool to access a vehicle‘s crash and safety performance virtually, without having to rely too much 
on costly physical testing. LS-DYNA is one such tool that has become an industry standard when it 
comes to building high fidelity crash models. Over the years, the complexity of these models have grown 
exponentially with details like, airbags, dummies, restraint systems, spotwelds, adhesives, material 
failures etc. being captured to improve the predictivity of the model. While this has resulted in improving 
our confidence in CAE predictions and in turn reduction in the number of physical tests, it has also made 
the models much larger and thus increasing the need for large compute resources to solve these 
models. Off late, it is not uncommon to see full vehicle models with 40 to 50 million elements requiring 
about 25 to 30 hours to solve a complete crash event on about 700 to 1000 CPUs on a modern-day 
high-performance compute cluster.  
 
Apart from the compute overhead, there is also a significant preprocessing cost involved in generating 
these models. Typically, once a new car design is available, it takes anywhere between two to three 
months to clean the CAD, mesh it, add all the necessary connections and materials, debug for any 
errors and establish a baseline performance. Usually, during the early concept phase of the design, the 
geometry is not fully mature. Parts and subsystems are borrowed from legacy programs and plugged 
into the new design. Since these components were not designed to be in the new vehicle, most often 
than not, a lot of time is spent in clearing geometric intersections and penetrations between neighbouring 
parts. These penetrations, if not cleared, would result in poor model predictions and numerical 
instabilities in the model that would cost a lot of time and effort during the design evaluations. And even 
if good clean geometry is available, most often, the CAE model fails to keep up with all the design 
changes and tends to lag the design iterations. Consequently, only few designs are ever thoroughly 
evaluated.  
 
Hence, there is a need for a solution where a designer, who is not an expert in Finite Element Method, 
can quickly evaluate multiple designs and make an informed decision on the best option. Traditionally, 
optimization tools have tried to fill this need by parameterizing CAE models and building meta-models 
and response surfaces that can be used to predict the behaviour of a new design. But these meta-
models rely heavily on parameterized input. It is easy to parameterize variables like part gauges and 
material properties but parameterizing the geometry is a challenge. Changing geometries needs to be 
done in conjunctions with a CAD tool or a morphing tool and this is usually a time-consuming process. 
Also, the response surfaces that are generated are usually only capable of predicting a scalar response 
like, the peak acceleration at a point in the model, maximum intrusion at a point in the vehicle or an 
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injury measure on the dummy. Some of the newer tools also try to predict a signal instead of just a 
scalar, but even then, the useful information that can be extracted from these meta-models are restricted 
to a very specific region of interest in the vehicle. If the design change has an influence anywhere else 
in the model, the meta-model would fail to highlight it.  
 
Hence there is a need for a tool that can quickly but accurately predict the full 3D response of a new 
design. With advances in machine learning methods, it is now possible to learn from lots of existing data 
and make inferences on unknown designs. SimAI is an Ansys tool that takes advantage of this 
technology and builds AI models that are trained on simulation data. In this paper, we discuss the 
technology being used as well as its application in vehicle crash performance predictions. 

3 SimAI Technology 
SimAI is a novel Deep Learning method which bakes in its proprietary architecture, state-of-the-art 
concepts like: INR, GNN, CNN, Multi-Scale learning, Fix point learning etc. . SimAI does not solve partial 
differential equations but learns the full 3D information coming from traditional solver solutions like LS-
DYNA. It can then quickly infer new solutions for efficient design iterations. SimAI thus combines a 
unique Neural Network architecture with physical priors (integral coefficients computed from local 
values, strong spatial correlation, local invariance extraction …) to deliver AI models for any type of 
physics [1][2][3].  
 
SimAI is delivered on a SaaS cloud platform that enables anyone to create AI models, store them as a 
library of models and to run inferences on these models to get high fidelity predictions for specific 
workflows. This platform is accessible through a webapp and through a Software Development Kit (SDK) 
allowing for agile workflow and process automation.  
 

4 Numerical Model Description 
SimAI can generate a reduced order model of both parametric and non-parametric data. In this section, 
three separate studies are described. The first case, an AI model is generated for a Tube crush model. 
This model has geometric variations that will be described in Section 4.1.1.  

 
 
 
In Section 4.1.2, we extend this study to make the geometric variations a bit more pronounced by 
changing the cross-section of the tube. Finally in Section 4.2, we look at a pedestrian head impact 
model. In this case, the location of head-from is changed. Geometry of the vehicle remains the same 
but the boundary condition changes as the impact is evaluated at several locations on the hood as 
shown in Fig. 2. Hence boundary condition change is incorporated in the geometry. The AI model is 
generated to predict deformation on the hood as well as the corresponding HIC value.  
 

Fig 1. Tube with Notches 
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4.1 Tube Crush  

4.1.1 Tubes with Notches 

This dataset consists of a series of 20 rectangular tubes with notches as shown in Fig 1. Geometric 
variability is introduced in the model by moving the location of the notch rearwards in each design. One 
of the ends of the tube is constrained by an immovable rigid wall. The other end is in contact with a 
movable rigid wall which is prescribed an initial velocity of 10m/s. The material of the tube is assumed 
to be steel with a density of 7.8e-6, young’s modulus of 210.0, yield strength 0.4 and tangent modulus 
of 2.0. The model uses kN, kg, ms and mm for unit system. The above image shows how the tube folds 
on itself when the rigid wall pushes against the tube.  

4.1.2 Tubes with varying cross-section 

In this dataset, the geometry variation is a little more pronounced by changing the cross-section of the 
tubes. Three different cross-sections, rectangular, circular and conical, were generated. Within each of 
these, tubes with three different dimensions were created as shown in the Table 1 and Fig 3. As in the 
first case, one end of the tube is resting against a fixed rigid-wall. The other end is in contact with a 
moving rigid-wall with an imposed initial velocity of 10m/s. The material properties are same as that 
used in the previous case.  
 
 

Cross-
section 

Set 1 Set 2 Set 3 

Conical 50mm front 
diameter 

60mm front 
diameter 

70mm front 
diameter 

Circular 50mm  60mm 70mm 

Rectangular 40mmx50mm 50mmx50mm 50mmx60mm 

 
 
 
 

 
 
 
 

Table: 1. Tube Geometric Variations  

Fig 3: Different geometries of the Tube Crush model.  

Fig.2 Difference in geometry due to change in position of Head 
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4.2 Pedestrian Head Impact Model 
Pedestrian protection assessment methods require multiple head impact assessments on a vehicle’s 
hood and other front-end parts as shown in figure 4. The model shown below was derived from NCAC 
Accord model referenced here [4]. The Head injury (HIC value) is evaluated using the acceleration of the 
head form within a 15 or 36ms time window as shown in figure 4.  
 

  
 
 
 
In this section, A child head form is impacted on Vehicle hood at an angle of 50 degree with horizontal 
at a speed of 40 KMPH. The HIC value is evaluated using Head acceleration using following formula, 
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𝑡𝑡1, 𝑡𝑡2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
Total 106 simulation data points were generated by varying position of head across hood. Figure 4. 
shows typical hood deformation along with head acceleration-time history for one of the impact locations.  
 

5 SimAI data Preparation and Model Training 
In order to predict a transient response, we need to extract the output field of interest at different 
timesteps. The input data for SimAI needs to contain both the input geometry and the 
operating/boundary conditions. In our case, the boundary conditions are any thickness changes for the 
parts as well as the time at which the output response has been extracted. The boundary conditions are 
fed as a json file. For the tube crush cases, there is no part thickness variation. Hence the json file will 
only have time as a parameter. So is the case with the Pedestrian Impact model, json file contains time 
as a parameter. Input geometry which includes variation in head position is fed to SimAI. Fig 5. shows 
a typical boundary condition file.  
 

 
 
 
 
 
 
Geometry is written out in .vtp or .vtu file formats. vtp holds the surface (shell elements) data and vtu 
holds the volume (solid elements) data in them. These files consist of the nodal coordinates, element 
connectivity along with any nodal or elemental outputs that can be used as inputs or outputs to the 
model. In the case of the tube crush models the .vtp file includes the undeformed shape and the 
displacement field at a given timestep. In case of Pedestrian Impact, the .vtp, .vtu files contain 

Fig 5: Boundary condition json file for pedestrian Head impact case 
consisting of time as parameter 

Fig.4 Pedestrian Head Impact deformation state and Acceleration-Time History plots 
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displacement field and the HIC field (HIC is single scalar value, hence it is mapped on the mesh as a 
constant field). The trained model is expected to predict back the displacement field and a HIC value for 
every hit location. To read the raw d3plot files and convert them to .vtp and .vtu format, pyDPF was 
used[5].  Fig 6. shows a sample vtp file for the tube crush and the pedestrian impact cases.   
 

                           
 
 
 
 
For the Tube crush model with 20 different iterations and 22 states per iteration, extracting vtp for every 
state would result in a total dataset size of 440 data points. Similarly for pedestrian impact model, with 
106 design points and 11 states per design point, we get a total of 1166 data points to train on. Once 
the input data is thus prepared, it is uploaded to SimAI platform. This can be done manually by dragging 
and dropping the dataset on the SimAI web interface or using a python SDK called pySimAI[6]. SimAI is 
currently available as a cloud-based solution and is hosted on AWS with all the necessary data security 
considerations. Once the data is uploaded the dataset within each project is then divided automatically 
by SimAI into two subsets as training set and test set.  

• Training set is used to train the model 
• Test set is used to assess the accuracy of the trained model. This unseen data gives an unbi-

ased estimation of the model performance on new cases 

5.1 Model configuration 
The next step after the data is uploaded is Model Configuration. This involves identifying the inputs and 
the output for the AI model along with the boundary conditions. For the Tube Crush use cases, the inputs 
for the model are the geometry and the time step. Geometry is extracted from the uploaded .vtp file and 
the time is read from the boundary condition json file. UX, UY and UZ are the output displacement field 
that the model is trained to predict.  
 
For the pedestrian head impact use case, time is read from .json file and geometry is extracted from 
.vtp file. Hence the geometry and time will serve as an input to SIMAI model. Also, along with the 
displacements UX, UY and UZ, HIC value is also defined as an output quantity. The model is now 
expected to learn the relationship between the geometry and the boundary conditions to the nodal 
displacements and the HIC value at any given time. Fig 7. shows the model configuration for the 
pedestrian impact model. 
 
An integral global coefficient called HIC value is also defined for the pedestrian head impact model. This 
acts as a scalar quantity to compare between the solver and the predicted model and helps in accessing 
the accuracy of the model. This global coefficient acts as a metric and is not used to constraint the model 
during the training. The global coefficient is defined as  
 

 ∫
(𝐻𝐻𝐻𝐻𝐻𝐻)𝑑𝑑𝑑𝑑𝑠𝑠

∫ (1)𝑑𝑑𝑑𝑑𝑠𝑠
 

∫ (𝐻𝐻𝐻𝐻𝐻𝐻)𝑑𝑑𝑑𝑑𝑠𝑠

∫ (1)𝑑𝑑𝑑𝑑𝑠𝑠

 

Fig 6: vtp files with displacement field on the nodes 
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 This just means that the constant HIC value that was defined on all the elements in the vtp file is 
summed up and is divided by the total surface area of the model, thus returning a scalar output.  
 
The desired precision of the model is also selected in the model configuration. The precision level 
directly affect the time required to train the model. A model with accuracy set to “Precise” takes 
anywhwere upto 2 days to train. “Very Precise” takes upto a week to train.  
 

6 Results and Discussion 
All three models were trained on Tensor Core GPUs on SimAI with an accuracy level of “Precise”. In 
the following sections we will discuss the model accuracy as well as some observations on these 
models. 
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Fig 7: model configuration for Bumper Impact model 
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6.1 Tube crush  

6.1.1 Tube with Notches 

This model took about 12hrs to train to the desired level of accuracy. Once the training is done, a model 
evaluation report is generated. The model evaluation report compares the SimAI prediction with the 
Solver simulation and highlights the regions where there are differences as shown in Fig 8. It can also 
be seen from the Fig 9. that SimAI has managed to learn the relationship between the location of the 
notch on the tube and the crush pattern of the tube. SimAI accurately predicts the buckling of the tube 
to be at the location where the notch exists. As can be seen, the AI model has learnt that the buckling 
of the crush tube occurs where the notch is and hence the tube buckles in the front for the top model 
corresponding to the notch being in the front. Similarly, the tube buckles at the rear end in the bottom 
model corresponding to the notch being at the rear end in this case. Model also predicts well for any 
other location of the notch along the length of the tube.  

Fig 8: Surface field UZ predicted by SimAI, the solver target and the difference between them 

Fig 8 a) Tube Crush Case 

Fig 8 b) Pedestrian Head Impact Case                
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6.1.2 Model prediction limit 

Now that the model behaves well on different geometries within the design space, one more evaluation 
was done to see how well the model can generalize on a significantly different geometry. In this case, 
the model was asked to predict the crush on a Tube with a considerably long notch compared to all 
other samples in the training data. SimAI model predicted a similar crush pattern to the previous cases 
whereas the solver output is significantly different. Fig 10. shows the comparison of SimAI prediction to 
solver output for this long notch case. The buckling of the model at the mid-section due to the long notch 
is not predicted by SimAI. This is because SimAI does not solve for any physics equations but infers the 
full 3D information from the training dataset. Since no such example existed in the training dataset, 
SimAI could not predict the true behaviour for the model. 

 

Fig 9: Crush behaviour at different timesteps comparison between SimAI and Solver  

Fig 10: Crush behavior SimAI vs Solver long notch  
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6.1.3 Retraining the model with the new design 

The model was then retrained by adding the long-notch example into the training dataset. As before, 
the d3plots for this new case had 20 states. Each state along with the corresponding displacement field 
was extracted as a vtp file and uploaded to SimAI. The retrained model is now capable of predicting the 
behaviour of the long notch more accurately. The model predicts the base case of small-notch as well 
as generalizes to the long-notch as can be seen in Fig 11. 

 
 
 

6.1.4 Tubes with varying cross-section 

The AI model in this case was trained on different cross-sectional tubes along with changing dimensions. 
For this case, the model was able to generalize well based on the input geometry. The crush pattern 
predicted by SimAI for a given shape and dimension agrees well with the solver predictions as shown 
in Fig 12.  

    
 
 

6.2 The Pedestrian Head Impact Case 
 
The aim of this load case was to predict both the deformed shape as well as the HIC value for a given 
geometry. This model took about 20hrs to train on NVIDIA A10G Tensor Core GPU. Fig 12. shows the 
trend plot for the global coefficient “HIC_global”. The X-axis is the Solver prediction for a design at a 
given timestep. Y-axis is the corresponding SimAI prediction for the same design at the same time step. 
A perfect AI model would have all the points on the diagonal meaning a 100% accuracy. But that would 
also indicate that the model is overfitting to the training data and might not generalize well. As seen in 
the Fig 13. SimAI model has most of the predictions within 10% error band indicating that model is 
generalizing well. The model evaluation report also generates a difference plot of the displacement field 
prediction as shown in Fig 8b. Fig 14 highlights the comparison of the displacement field between SIMAI 
prediction Vs Solver (ground truth in this case)   
 
The SimAI model can be used to make multiple predictions on a new geometry at different timesteps. 
Each of these predictions will predict a displacement field which can be overlayed on the undeformed 
geometry to produce the deformed shape. These different states can be then stitched together to 
generate the time varying displacement field for the entire crash event.  
 
Finally, each prediction also generates the global coefficient “HIC_global”. Fig 15. compares the HIC 
value predictions between Solver and SimAI. Again, the AI model predictions compare reasonably well 
with the Solver.  
 

Fig 11: Retrained model with the long-notch sample added to training set. 
Model now predicts both cases reasonable accurately 

Fig 12: SimAI predictions for differently shaped crush tubes  
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Fig 13: SimAI trend plot for HIC value  

Fig 14: Resultant Displacement prediction comparison between SIMAI and Solver 

Fig 15: Comparison of HIC value prediction between Solver and SimAI  
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The predictions made on the AI models are orders of magnitude faster than the Solver. Each of these 
predictions take less than a second for HIC value prediction and about 10s to predict the entire 
displacement field and post-processing it. Predictions can also be made at any time within the lower 
and upper bounds of the time within the dataset. Thus, the SimAI predictions can be of much finer 
sampling compared to the Solver.  
 

7 Conclusions 
The above set of use cases demonstrate the applicability of Deep Learning technology for generating 
AI models for structural applications by learning the physical behaviour from past LSDYNA simulations. 
The models can predict both the final deformed state as well as any other intermediate states, thus 
making it possible to have one single AI model for the transient non-linear event. 
 
The ability of the model to learn the geometric variations between different designs without having to 
parameterize the geometry makes it very useful for quickly analysing new designs. The study highlights 
the effectiveness of the AI models as well as its limitations with regards to the model generalization, on 
completely different geometry than the ones the model was trained on.  
 
The AI-simulation process is very simple and fast to deliver full field responses on surfaces and volumes. 
Once the model is trained, non-CAE engineers can use the trained model to make predictions on new 
designs. The predictions can be made on CAD (stl files) directly, thus avoiding the need for meshing the 
CAD.  
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