A systematic study on Ansys Forming® performance
Mesh adaptivity refines the blank mesh as needed in stamping simulations. Users do not need to anticipate where a dense mesh will be required. Despite its universal use, it demands significant effort due to serialization and the need to carry a dense mesh through subsequent iterations. In-Core adaptivity and Mesh fusion assist the solver in conserving effort, thereby enhancing performance. This paper will demonstrate best practices for utilizing In-Core adaptivity and Mesh fusion in Ansys Forming through practical cases. In addition, for different model, we should find an optimum number of CPUs to run the job. Beyond this number, the scalability will not see any obvious improvements.
https://www.dynalook.com/conferences/17th-international-ls-dyna-conference-2024/forming/shen_ansys.pdf/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
A systematic study on Ansys Forming® performance
Mesh adaptivity refines the blank mesh as needed in stamping simulations. Users do not need to anticipate where a dense mesh will be required. Despite its universal use, it demands significant effort due to serialization and the need to carry a dense mesh through subsequent iterations. In-Core adaptivity and Mesh fusion assist the solver in conserving effort, thereby enhancing performance. This paper will demonstrate best practices for utilizing In-Core adaptivity and Mesh fusion in Ansys Forming through practical cases. In addition, for different model, we should find an optimum number of CPUs to run the job. Beyond this number, the scalability will not see any obvious improvements.