
2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

A systematic study on Ansys Forming® performance
Dr.-Ing Kang Shen1

1Ansys Germany GmbH

1 Abstract
Mesh adaptivity refines the blank mesh as needed in stamping simulations. Users do not need to
anticipate where a dense mesh will be required. Despite its universal use, it demands significant effort
due to serialization and the need to carry a dense mesh through subsequent iterations. In-Core
adaptivity and Mesh fusion assist the solver in conserving effort, thereby enhancing performance. This
paper will demonstrate best practices for utilizing In-Core adaptivity and Mesh fusion in Ansys Forming
through practical cases. In addition, for different model, we should find an optimum number of CPUs to
run the job. Beyond this number, the scalability will not see any obvious improvements.

2 Background
In-core adaptivity aims to dynamically create new nodes and elements during the solution loop, avoiding
the significant disk I/O time and serialization that limit scalability. This is achieved by moving data from
a single large array to dynamically allocated arrays, allowing their size to change while the problem runs.
Implementing this requires substantial modifications, as every data array dependent on the number of
nodes must be moved and referenced differently [1, 2].

To capture detailed physical behaviors near drastic changes, a finer finite element mesh is required.
This is achieved by in-core adaptivity. However, using a finer FEA mesh for the entire model is
sometimes impractical due to the long computation time and large computational resources needed.
Incremental metal forming is a slow process and simulating it can take many hours with finer mesh.
Improved methods for time-marching simulations are needed to obtain accurate numerical physical
behaviors of sheet metal during forming processes with predefined load paths. Mesh fusion helps in this
case by combining low sensitive finer element together. It will further improve the solver performance [3,
4].

3 Option in Ansys Forming
To use in-core adaptivity and mesh fusion, the options need to be defined before the simulation started.
Adaptive Fusion Frequency, Angle Tolerance, Strain tolerance need to be set for fusion. In-Core
Adaptivity option needs to be activated.

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

4 Test cases and results
In this paper, 6 cases are tested. The first four cases are s-rail, bipolar plate, water sink and car hood
forming. The last two cases are submitted by industrial partner (due to the confidentiality, only
performance study will be shown).

Following table provides the information about the forming operations in each test cases, including
operation plan (D for drawing, T for trimming, F for flanging), element number at the end of simulation
and testing plan.

 Operation plan Elem. Num. Testing plan
s-rail D 26,509 2, 4, 8, 16 CPUs In-core & fusion
bipolar plate D 56,180 2, 4, 8, 16 CPUs In-core
water sink D-T-T-F-F 93,750 2, 4, 8, 16 CPUs In-core
car hood D-T-T-F 147,122 2, 4, 8, 16 CPUs In-core & fusion
Industrial case 1 D-T 1,359,128 28, 56 CPUs In-core
Industrial case 2 F-F-T-F-T 74,196 28, 56 CPUs In-core

For all test, LS-DYNA solver with MPP single precision is used. The operations system is Linux CentOS
and Intel MPI is chosen for this case.

S-rail is the classic case with Ansys Forming. It has a coarse blank mesh initially and undergoes many
mesh adaptivity steps. Increasing the CPU count from 2 to 16 accelerates the simulation by 3.6 times.
In-core adaptivity reduces another 37% with 16 CPUs. In this case, mesh fusion is added to the in-core
adaptivity. Mesh fusion decreases the number of elements on the side wall and saves an additional 4.5%
of time.

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

A bipolar plate is a crucial component of fuel cells and is often requested by fuel cell manufacturers.
Because it often contains fine features in the tool, a fine mesh is used to start the stamping simulation,
and a low number of adaptivity steps is expected. In this test, a speed-up of 2.1 times is shown when
16 CPUs are used. The in-core adaptivity requires more time than a normal run because it takes CPU
capability to run adaptivity, which is not needed in this case. If a similar case like the bipolar plate is
used, it is recommended not to use in-core adaptivity for better performance.

The water sink case contains more operations than the first two cases. As shown, the trimming operation
does not show a significant difference with in-core adaptivity and mesh fusion. The in-core adaptivity
has more effect on the Drawing and Flanging operations, especially with 16 CPUs. With 2 CPUs, in-
core only saves 2% of computation time. With 16 CPUs, it saves 24.6% of time in the first drawing
operation. The two flanging operations show the same tendency.

The car hood case has the largest number of elements among the first four cases. It is very challenging
for in-core adaptivity with a low CPU count. In this case, only when the number of CPUs reaches 16
does it save 17.4% of time with in-core. Using 16 cores makes more sense compared to a lower core
count like 2 CPUs, as it saves 4.5 times the effort.

Industrial cases 1 and 2 come from a tool maker. Case 1 was tested with 28 CPUs because it was in
the sweet spot of performance and the number of CPUs used. As shown, when doubling the CPU count,
it only saved 5.5% of time. However, it is a perfect case for in-core adaptivity because a high number of
CPUs are available, and the adaptivity could be processed well in-core. With in-core, it saves about 39%
of time with 56 CPUs. The same observation is shown for case 2.

5 Summary
In this paper, a systematic study is conducted with normal, in-core, and mesh fusion adaptivity. When
the number of elements is larger than 100,000 and the available CPU count is fewer than 16, normal
mesh adaptivity performs better. In-core adaptivity shows better performance when the number of
elements is low (<50,000) or when more CPUs (>16) are available. Mesh fusion contributes to
performance based on in-core adaptivity.

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

a) b)

Figure 1 S-rail case a) with adaptivity, b) with mesh fusion

Figure 2 performance of s-rail case

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

srail

srail incore

srail fusion

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

Figure 3 Bipolar plate case

Figure 4 performance of Bipolar plate

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

bipolar

bipolar incore

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

Figure 5 Water sink case

0
100
200
300
400
500
600
700
800
900

1000

2 4 6 8 10 12 14 16

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

Drawing

water_sink

water_sink incore

water_sink fusion

0
2
4
6
8

10
12
14
16
18

2 4 6 8 10121416

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

water_sink

water_sink
incore

water_sink
fusion 0

2
4
6
8

10
12
14
16
18

2 4 6 8 10121416

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

water_sink

water_sink
incore

water_sink
fusion

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

Figure 6 performance of Water sink case

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14 16co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

Flanging 1

water_sink

water_sink
incore

0

1000

2000

3000

4000

2 4 6 8 10 12 14 16co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

Flanging 2

water_sink

water_sink
incore

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

Figure 7 car hood case

Figure 8 performance of car hood case

0

1000

2000

3000

4000

5000

2 4 6 8 10 12 14 16co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

Drawing

hood

hood incore

hood fusion

0
1000
2000
3000
4000
5000
6000

2 4 6 8 10 12 14 16co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

Flanging

hood

hood incore

2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA

© 2024 Copyright by Ansys Inc.

Figure 9 performance of industrial case 1

Figure 10 performance of industrial case 2

6 Literature
[1] Brian Wainscott and Houfu Fan, LSTC, In Core Adaptivity, 15th international LS-DYNA User

Conference
[2] Houfu Fan, Brian Wainscott, Li Zhang and Xinhai Zhu, Performance Study of In Core Adaptivity

in LS-DYNA, 16th international LS-DYNA User Conference
[3] Houfu Fan, Li Zhang, Xinhai Zhu and Yuzhong Xiao, Improvement of Mesh Fusion in LS-DYNA,

15th international LS-DYNA User Conference
[4] Xinhai Zhu, Houfu Fan, Li Zhang, Yuzhong Xiao and Ninshu Ma, Tube Adaptivity for Mesh

Fission/Fusion in LS-DYNA, 15th international LS-DYNA User Conference

0

1000

2000

3000

4000

5000

6000

28 32 36 40 44 48 52 56

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

test_1

test_1 incore

0
200
400
600
800

1000
1200
1400
1600
1800

28 32 36 40 44 48 52 56

co
m

pu
ta

tio
n

tim
e

[s
]

Number of CPUs

test_2

test_2 incore

	1 Abstract
	2 Background
	3 Option in Ansys Forming
	4 Test cases and results
	5 Summary
	6 Literature

