
17th International LS-DYNA Conference 2024, Detroit, Michigan, USA 

© 2024 Copyright by Ansys Inc. 

Simulation of viscoelastic two-phase flows with LS-
DYNA ICFD 

Z. Solomenko1, F. Del Pin1, I. Caldichoury1

1Ansys 

1 Introduction 
Simulations of viscoelastic flows are presented. Viscoelasticity is accounted for by solving a constitutive 
equation for the conformation tensor - the viscoelastic stress tensor is directly related to the conformation 
tensor [1] and the divergence of the viscoelastic stress tensor yields an extra momentum source. The 
Oldroyd-B constitutive model is here considered [1]. Results of several benchmark tests are presented. 
Implementation is first tested on a two-dimensional lid-driven cavity flow. Results of two-dimensional 
and three-dimensional Oldroyd-B liquid jets are then presented. Viscoelastic models are used in 
applications like food-processing, polymer melt processing, blood flow modeling. 

2 Theory 
The constitutive model equation needs to be solved for the conformation tensor. Let 𝜇𝜇𝑝𝑝 and 𝜆𝜆 be the 
polymeric viscosity and the relaxation time, respectively. The constitutive equation reads 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ⋅ ∇𝐴𝐴 − ∇𝒖𝒖 ⋅ 𝐴𝐴 − 𝐴𝐴 ⋅ ∇𝒖𝒖𝑇𝑇 = −
1
𝜆𝜆
𝑓𝑓𝑅𝑅(𝐴𝐴), 

with 𝑓𝑓𝑅𝑅 a relaxation function. The constitutive equation is solved in the log-conformation framework, for 
the code to be able to handle flows with high viscoelasticity, i.e. high-Weissenberg number [2]. The 
viscoelastic tensor reads 

𝜏𝜏 =
𝜇𝜇𝑝𝑝
𝜆𝜆
𝑓𝑓𝑆𝑆(𝐴𝐴), 

with 𝑓𝑓𝑆𝑆 a strain function. The divergence of the viscoelastic tensor is an extra term in the momentum 
equation. For an Oldroyd-B fluid, relaxation and strain functions are such that 𝑓𝑓𝑅𝑅(𝐴𝐴) = 𝑓𝑓𝑆𝑆(𝐴𝐴) = 𝐴𝐴 − 𝐼𝐼. 

3 Features 
*ICFD_MODEL_VISCOELASTIC

This specifies parameters of the viscoelastic model, which must be referenced in the material card. 

*ICFD_BOUNDARY_PRESCRIBED_VISCOELASTIC

This specifies boundary conditions for the conformation tensor. In practice, boundary conditions for the 
conformation tensor are not mandatory, but it is better to specify them when the velocity is prescribed. 

Note that a relaxed state 𝐴𝐴 = 𝐼𝐼 is considered as initial condition. 

4 Some results 
4.1 Two-dimensional lid-driven cavity flow 
This is the standard benchmark test that was studied in detail in [2]. Consider a square cavity of side L. 
The top boundary has an imposed profile 

𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 8𝑈𝑈(1 + tanh(8𝑡𝑡 − 4))𝑥𝑥2(1 − 𝑥𝑥)2𝒆𝒆𝑥𝑥, 

with 𝑥𝑥 and 𝑡𝑡 made dimensionless by using 𝐿𝐿 and 𝐿𝐿/𝑈𝑈 as characteristic length and time. No-slip is 
imposed at remaining boundaries. The fraction of solvent viscosity is 𝛽𝛽 = 0.5. The Reynolds number is 
𝑅𝑅𝑅𝑅 = 0.01. The Weissenberg number is 𝑊𝑊𝑊𝑊 = 1. The timestep is Δ𝑡𝑡 = 5 ⋅ 10−5. Simulations were run on 
three meshes, details of which are given in Tab.1. Results of velocity profiles are shown in Fig.1. Results 
compare very well with previous work [2]. Convergence of velocity profiles to M3 results is linear. 
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Mesh M1 M2 M3 

minh 1/80 1/160 1/320 

maxh 1/40 1/40 1/80 

Table 1: Mesh details for the two-dimensional lid-driven cavity flow. 

 
Fig.1: Velocity profiles 𝑢𝑢𝑥𝑥(0.5, 𝑦𝑦) and 𝑢𝑢𝑦𝑦(𝑥𝑥, 0.5) at 𝑡𝑡 = 8 for the two-dimensional lid-driven cavity flow. 
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4.2 Two-dimensional jet buckling 
That is a benchmark for two-phase viscoelastic flow without surface tension [3]. A liquid jet flows down 
into the air. Simulations of Newtonian and viscoelastic flows are compared. 

4.2.1 Newtonian fluid 

Inlet is positioned at (0,𝐻𝐻) and has a width 𝐿𝐿. Fluid is injected down with a velocity (0,−𝑈𝑈). Parameters 
are gathered in Tab.2 – those correspond to Reynolds and Froude numbers 𝑅𝑅𝑅𝑅 = 0.01 and 𝐹𝐹𝐹𝐹 = 0.5. 
 

H L U Ρ μs g 

0.075 m 0.004 m 0.1 m.s-1 1000 kg.m-3 40 Pa.s 9.81 m.s-2 

Table 2: Simulation parameters for Newtonian liquid jet. 

4.2.2 Oldroyd-B fluid 

Same flow parameters are used here except for the solvent viscosity. New parameters are gathered in 
Tab.3 – those correspond to a fraction of solvent viscosity 𝛽𝛽 = 0.1 and a Weissenberg number 𝑊𝑊𝑊𝑊 = 20. 
 

μs μp Λ 

4 Pa.s 36 Pa.s 0.8 s 

Table 3: Simulation parameters for Oldroyd-B liquid jet. 

4.2.3 Results 

Time-stepping was based on a maximum CFL of 0.5. Qualitative results are given in Fig.2 – 
viscoelasticity yields less viscous dissipation, and more stretching compared to the Newtonian flow. 
Three meshes were used for convergence tests – see details in Tab.4. Time signals of the normalized 
jet length are shown in Fig. 3. Results compare very well with those from the literature [3,4]. 
 

Mesh M1 M2 M3 

minh 1/20 1/40 1/80 

Table 4: Mesh details for two-dimensional liquid jets. 
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Fig.2: Left: Newtonian jet at 𝑡𝑡 = 20. Right: Oldroyd-B jet at 𝑡𝑡 = 13.25. 

 

 
 

Fig.3: Time signals of jet length. Time and jet length are made dimensionless with 𝐿𝐿/𝑈𝑈  and H, 
respectively. 
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4.3 Three-dimensional jet buckling 
The case from Section 4.2 is now extended to three dimensions, as in [4]. Fig.4 shows qualitative results 
for the Oldroyd-B jet, obtained with a uniform mesh size 1/20. As in [4], the jet reaches the bottom wall 
earlier than in the two-dimensional case. Results compare well with those from [4]. 
 

           
Fig.4: Oldroyd-B jet at times 𝑡𝑡 = 8.25 and 𝑡𝑡 = 10.25. 

5 Summary 
Oldroyd-B single and two-phase flows can now be simulated with ICFD. Future work will focus on 
extension to other constitutive models by using different relaxation and strain functions. The code will 
also be tested on more complex models, e.g. viscoelastic flows with surface tension. 
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