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1 Abstract 

Heart disease is among the leading causes of death in the western countries; hence, a deeper 
understanding of cardiac functioning will provide important insights for engineers and clinicians in 
treating cardiac pathologies. In this paper we will concentrate on electrophysiology (EP), which 
describes the propagation of the cell transmembrane potential in the heart. In LS-DYNA, EP can be 
coupled with solid and fluid mechanics for a multiphysics simulation of the heart, but pure EP is also 
often used to investigate complex phenomena such as cardiac arrhythmia or fibrillations.  
The gold standard model for EP is the “bi-domain” model, along with the slightly simplified “mono-
domain”. These were introduced in LS-DYNA a few years ago [1]. They give very accurate predictions, 
but the associated computational expenses are significant, which can be an issue for patient-specific 
predictions, for example, cardiac activation patterns for complex procedures such as cardiac 
resynchronization therapy (CRT). 
In this paper we introduce new computationally efficient eikonal and reaction-eikonal solvers. The 
eikonal method is very general and describes the propagation of a wavefront in a medium with given 
propagation velocities. The solution is the arrival time of the wave at each node, which corresponds to 
the activation time in the case of EP. This activation time can be used to trigger an action potential at 
each node, either independently from each other, or with an additional spatial diffusion term between 
nodes so that each node influences its neighbors. 
The eikonal solver works on the 3D elements of the myocardium, but also on the beams (or truss 
elements) composing the rest of the conduction system of the ventricles, i.e. the bundle of His, the left 
and right bundle branches, and the Purkinje network. Also, the eikonal solver can handle several waves 
by tracking more than one activation time per node. This allows for example to simulate reentry 
phenomena. 
The eikonal solver will be presented and different examples will be shown, as well as a result and 
performance comparison between eikonal and monodomain models. 
 

2 Introduction 

A cardiac computational model can give biomedical researchers an additional source of information to 
understand how the heart works. Simulation can be the base of theoretical studies into the mechanisms 
of cardiac pathologies, provide diagnostic value or can be used to assist in therapy planning. The goal 
of Ansys is to be able to simulate the pumping heart in LS-DYNA, with a coupling scheme between the 
Electrophysiology (EP) equations describing the propagation of the electrical wave, the mechanical 
deformations triggered by the electrical potential, and the blood flow in the pumping heart. This paper 
will deal with the EP part of the scheme. 
 
The propagation of the cardiac electric impulse in the myocardium can be described by the bidomain or 
monodomain equations [1], which describe the evolution of the transmembrane potential Vm(x, t) with a 
parabolic reaction-diffusion equation, coupled with a system of ODEs which represent either the fluxes 
of the ion species across the cell membrane or that tries to phenologically reproduce the shape of the 
action potential. In LS-DYNA, the bidomain and monodomain are solved using the Finite Element 
Method (FEM) in the mesh representing the myocardium, coupled with ODE solvers for the ionic models 
at each node of the mesh [1]. The myocardium can be coupled with a network of beams representing 
the His-Purkinje, through Purkinje-ventricular junctions. 
These solvers give very accurate results, but can take a long time to run on large meshes. In some 
studies very detailed meshes might be needed to capture the front of the transmembrane potential wave, 
which leads to very large linear systems. The systems of ODEs can also take a significant cpu time, 
depending on their level of description. 
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For some of the studies though, where only the activation profile is of interest, the accuracy of the 
mono/bi-domains may not be required, as the uncertainty introduced by the lack of knowledge of patient-
specific tissue properties is far greater than the imprecision that would be introduced by a simpler model 
choice. The Eikonal family of EP models [4,5] are well recognized for such contexts and have 
demonstrated a high potential in several clinical applications [4,6]. 
 

3 Presentation of the Eikonal model 

 
The Eikonal equation is a very general equation used to solve wave propagations in media with given 
local propagation velocity tensors. In EP, the solution of the eikonal equation is the arrival time, or 
activation time 𝜑(𝑥) of the electric wave at the different positions 𝑥 of the myocardium. 
 
The eikonal equation reads [2]: 
 

ඥ(𝛻𝜑)்𝑉(𝛻𝜑) = 1 𝑜𝑛 Ω          (1) 
𝜑 = 𝜑଴ 𝑜𝑛 𝛤 
 
Where 𝑉(𝑥) is a „velocity“ tensor with the squared velocities at position x. Ω is the domain where the 
wave propages, and Γ the starting boundary for the wave (i.e., where the stimulus is applied). 
 
 In the case of the myocardium, if (l(x), t(x), n(x)) are the local longitudinal, transverse and normal 
directions associated with the fibers, with associated velocities (vl(x), vt(x), vn(x)), then the velocity tensor 
in (1) reads: 
 
𝑉(𝑥) = 𝑣௟

ଶ(𝑥)𝑙(𝑥)𝑙்(𝑥) + 𝑣௧
ଶ(𝑥)𝑡(𝑥)𝑡்(𝑥) + 𝑣௡

ଶ(𝑥)𝑛(𝑥)𝑛்(𝑥)     (2) 
 
This velocity tensor is based on the same fibers as the electrical conductivity tensors in the mono and 
bi-domain models. This velocity tensor usually has very different values along the fibers than across the 
fibers. It is somehow proportional to the conductivity tensor used in the mono and bi domain models, 
where the proportionality coefficient can be set up by known activation times at different locations, 
although fitting conductivity to a desired conduction velocity at a given spatial discretization may not be 
a trivial task and has been discussed in detail in [3]. 
 
The basic brick of the numerical method is to compute the activation time 𝜑ସ at the 4th node of a 
tetrahedron, given activation times (𝜑ଵ,  𝜑ଶ ,  𝜑ଷ) at the 3 other ones, and the velocity tensor 𝑉 in the 
tetrahedron, as shown in fig (1). The idea is to find a point (𝑥ହ) in the plane (𝑥ଵ, 𝑥ଶ, 𝑥ଷ), i.e. 
 
𝑥ହ = 𝜆ଵ𝑥ଵ + 𝜆ଶ𝑥ଶ + (1 − 𝜆ଵ − 𝜆ଶ)𝑥ଷ ,        (3) 

 
that minimizes  

 
𝜑ସ = 𝜑ହ + ඥ𝑒ହ,ସ

்𝑉𝑒ହ,ସ ,          (4) 
 
Where 𝑒ହ,ସ is the edge vector going from 𝑥ହ to 𝑥ସ, and where  
 
𝜑ହ = 𝜆ଵ𝜑ଵ + 𝜆ଶ𝜑ଶ + (1 − 𝜆ଵ − 𝜆ଶ)𝜑ଷ,        (5) 
 
hence a minimization problem on (𝜆ଵ, 𝜆ଶ) for a given set of (𝜑ଵ,  𝜑ଶ ,  𝜑ଷ), and 𝑉. 
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Fig.1: Schematics of the essential brick of the eikonal solver: finding 𝜑ସ  given (𝜑ଵ,  𝜑ଶ ,  𝜑ଷ) and 𝑉in a 
tethahedron. 

 
The eikonal solver thus requires a tetrahedral mesh for the myocardium part, which can be coupled with 
a beam network representing the conduction system. 
 

4 Simple eikonal vs time-stepping multifront (TSMF) eikonal 

4.1 Simple eikonal 

 
The simple eikonal model propagates the wave front independently of the local velocity tensor 
amplitude. So at a given eikonal iteration, activation times in an area with slow velocity may be much 
larger than in other areas with a larger velocity. This can create some inaccurate activation times in non-
convex geometries with different propagation velocities, as illustrated in figures (2) and (3) which show 
a simple example of wave propagation on a thin slab of tissue with several channels and different 
propagation velocities. 
 

 

Fig.2: Example of a slab geometry with different propagation velocities. a- shows the mesh and b- the 
corresponding propagation velocities. The red part has a small velocity, the green part a large 
one, and there is no propagation in theblue part. c- shows how the waves should look like. 
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Fig.3: Results of the simple eikonal model on the example presented in figure 2. b- isocontour of the 
eikonal iteration number. c- fringes of the activation time where the return of the central wave 
through the lateral channels is missed.  

 

4.2 Time stepping multi-front (TSMF) eikonal 

4.2.1 Time-stepping 

 
In this solver, an additional global time 𝑡௘௜௞ and time step time 𝑑𝑡௘௜௞  are added to the iterations of the 
eikonal solver. During the eikonal iterations, only the elements having nodal activation times smaller 
than the current global time 𝑡௘௜௞ are allowed to propagate the front. The other ones stay idle until 𝑡௘௜௞ 
becomes large enough. When all the elements are above 𝑡௘௜௞, it is advanced by the time step,  
𝑡௘௜௞ ≔ 𝑡௘௜௞ + 𝑑𝑡௘௜௞. This method allows the eikonal iterations to follow accurately the wavefront, which 
depends on the local velocities.  
Figure (4) shows the result of the TSMF eikonal solver on the small test case presented in figure (2). 
 

 

 

Fig.4: Result of the time-stepping eikonal solver on the small case presented in figure 2. The eikonal 
iso-iteration contours (b) now follow the wave front. c- shows the fringes of the activation time 
which corresponds to what was expected in figure (2-c) 



2024 International LS-DYNA Conference, Metro Detroit, Michigan, USA 
 
 

 
© 2024 Copyright by Ansys Inc. 

 

4.2.2 Multifront 

 
The global time 𝑡௘௜௞ can be compared to the local activation time at each node, and allows to check 
whether the node is in an active (or refractory) state, or if it is in a passive (or resting) state. 
More precisely, given a ionic model (which can depend on the node), one can compute the refractory 
time 𝑡௥௘௙  associated to the cell model (see figure 5), and use it during the eikonal iterations: 
 

൜
𝑖𝑓 𝑡௘௜௞ − 𝜑௡௢ௗ௘ <  𝑡௥௘௙ , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒

𝑖𝑓 𝑡௘௜௞ − 𝜑௡௢ௗ௘ >  𝑡௥௘௙ , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑝𝑎𝑠𝑠𝑖𝑣𝑒  
      (6) 

 
 We then keep track of the active/passive state of the nodes, and when a wave reaches a given node, 
it will only propagate if the node is in a passive state. If the node is active, the wave will stop there. 
 

 

Fig.5: Action potentials and refractory times for 3 different ionic models 

Several waves can thus propagate through the same medium, as long as the time between 2 waves is 
larger than the refractory time. One can then monitor the successive activation times 
(𝜑ଵ, 𝜑ଶ, 𝜑ଷ, 𝜑ସ, … , 𝜑௡) at a given node as the different waves pass through it. 
 

5 Reaction eikonal 

As mentioned before, the eikonal model just gives the nodal activation time 𝜑 (or a series of activation 
times (𝜑ଵ, 𝜑ଶ, 𝜑ଷ, 𝜑ସ, … , 𝜑௡)  in the case of the TSMF eikonal). This is what we call the eikonal solver, 
and it is set up with EMSOL=14 in *EM_CONTROL. The run will stop at the end of the eikonal step and 
the activation map is output in vtk format in a „vtk“ directory. 
 
One can extend the eikonal model in order to get a fuller EP model with Transmembrane Potential and 
possibly other ion model variables like Calcium Concentration, that allows coupling with cardiac  
mechanics. In these runs, an eikonal solve is done first to compute the activation times (we call this part 
the eikonal solve), which then, are used in a standard explicit or implicit LS-DYNA run, possibly coupled 
with the mechanics and the CFD solvers (we call that second part the EP part of the run). 
 

5.1 RE- solver 

 
The simplest way to do so is to locally depolarize the ionic ODE model by adding an artificial foot current 
𝐼௙௢௢௧(𝑡) of duration 𝑇௙௢௢௧, at activation time, i.e such that: 
 

ቊ
𝐼௙௢௢௧(𝑥, 𝑡) = 𝐼௙௢௢௧(𝑡) 𝑖𝑓 𝜑(𝑥) < 𝑡 < 𝜑(𝑥) + 𝑇௙௢௢௧  

𝐼௙௢௢௧(𝑥, 𝑡) = 0 𝑖𝑓 𝑛𝑜𝑡  
       (7) 

 
For simple eikonal, and: 
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ቊ
𝐼௙௢௢௧(𝑥, 𝑡) = 𝐼௙௢௢௧(𝑡) 𝑖𝑓 ∃ 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜑௜(𝑥) < 𝑡 < 𝜑௜(𝑥) + 𝑇௙௢௢௧   

𝐼௙௢௢௧(𝑥, 𝑡) = 0 𝑖𝑓 𝑛𝑜𝑡  
     (8) 

 
For the time stepping multifront eikonal model. 
 
This foot current will trigger an action potential at the arrival of the transmembrane potential wave, with 
all the state variables of the ionic model locally available. Again, these can include the calcium 
concentration which could be used to couple the EP model with mechanical deformations using 
*MAT_295. 
 
The monodomain equation reads [1]: 
 

𝐶௠
డ௏೘

డ௧
+ 𝐼௜௢௡ −

ଵ

ఉ
∇ ∙ (𝜎∇𝑉௠) = 𝐼௦௧௜௠(𝑥, 𝑡)         (9) 

 
Where 𝑉௠ is the transmembrane potential, 𝐶௠ the membrane capacity per unit area, 𝛽 is the membrane 
surface to volume ratio, 𝐼௜௢௡  the ionic current generated by the cell membrane, and 𝐼௦௧௜௠ a stimulus 
current. 
 
This first EP solve corresponds to neglecting the diffusion term and keeping only: 
 

𝐶௠
డ௏೘

డ௧
= 𝐼௙௢௢௧(𝑥, 𝑡) − 𝐼௜௢௡           (10) 

 
This is what we call the RE- model, keeping the nomenclature of [4]. It is triggered by using EMSOL=15 
in *EM_CONTROL. 
 

5.2 Spline ionic model 

 
Since in RE- solver the same ODE’s with the same excitations are solved at each node, we might as 
well solve them once and for all and store the results in a spline format, so that during the EP part of the 
run, we can get 𝑉௠(𝑥, 𝑡) just by a lookup, based on 𝑡 − 𝜑(𝑥), as shown on figure (6). At this time, 𝑉௠, 
and the Calcium Concentration are stored in such splines, but other state variables could be added in 
the future. This is what we call the „spline“ way to solve the ionic model. Since a simple lookup takes 
much less time than a full ODE system solve, the global run is much faster using the spline way for ionic 
models, and this capability has also been extended to the mono and bi- domain models.  This method 
is triggered by setting ionSolver to 2 in *EM_CONTROL_EP to 2. A second line was added to 
*EM_CONTROL_EP with spliTend and spliDt in order to define the end time and time step of the initial 
spline generation. 
 
 

 

Fig.6: Lookup into a spline instead of solving an ionic model ODE 
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5.3 RE+ solver 

 
In some cases, it may be interesting to keep the diffusion part of the monodomain equation, since 
diffusion plays an important role in smoothing out gradients of 𝑉௠(𝑥, 𝑡) during repolarization and avoid 
distortions in electrograms and the ECG. We can thus add the diffusion term by solving: 
 

𝐶௠
డ௏೘

డ௧
=

ଵ

ఉ
∇ ∙ (𝜎∇𝑉௠) + 𝐼௙௢௢௧(𝑥, 𝑡)−𝐼௜௢௡          (11) 

 
This is called the RE+ model according to [4] and is triggered by using EMSOL=16 in *EM_CONTROL. 
The diffusion part of equation (11) is solved using FEM, while the ionic model can be solved using either 
standart ODE’s resolution methods at each node, or the „spline ionic model“ of section 5.2. 
 

6 Example of a reentry with the TSMF eikonal solver 

 
Cardiac arrhythmias are generally produced by one of three mechanisms: enhanced automaticity, 
triggered activity, or reentry [7]. Reentries are due to a closed circuit within the myocardium and can 
prevent the propagating EP wave from dying out after a normal activation. It is the EP mechanism 
responsible for the majority of clinically important arrhythmias. 
 
A small test case was setup to illustrate how such a reentry can be generated and studied using the RE- 
solver. It consists of a thin slab with 2 parts representing tissue with the same ten-Tusscher ionic model, 
but very different propagation velocities, and a third part representing scar tissue with no propagation 
(see figure 7). 2 stimuli are applied at the bottom of the slab with a precise interval between them, so 
that the conditions for creation of a reentry wave are satisfied. 
 

 

Fig.7: Setup of the reentry test case. a): setup of the case, a thin slab of tissue with 3 different parts, 
red: healthy tissue with high wave velocity, green „bottleneck“:  unhealthy tissue with a small 
velocity, blue: scar tissue with no propagation. b) velocities in the different parts, as well as the 
area where the 2 stimuli are done. 

 
Figure (8) shows the evolution of the EP wave. 
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Fig.8: Evolution of the EP wave, with the fringes of 𝑉௠ at increasing times  a): the first stimulus at the 
bottom triggers a wave going up. The wave is ahead on the external areas because of the slow 
velocity in the „bottleneck“ part in the center. The 2 waves meet at the top of the center channel. 
b): just as the bottom part becomes passive, a second stimulus is triggered at the bottom. The 
wave can propagate on the external parts which become refractory just ahead of it, but not 
through the center bottleneck part which is still active because of the small velocity there. c): the 
wave coming down in the center part exits the bottleneck just after the bottom area has become 
passive and can thus propagate there by going up on the external parts. d): the self sustaining 
loop is created with a wave going up through the outside parts and coming back down through 
the inside part.   

 

7 Comparison of RE- to monodomain model 

 
To evaluate the precision of the RE- model, we compared it to the standard monodomain model. The 
comparison was done on a rectangular slab of orthotropic tissue, stimulated on one corner. The chosen 
ionic model for both simulations was the ten-Tusscher model [8]. A qualitative analysis was done on the 
full activation time fields (figure 9) and on the transmembrane potential at three specific points (figure 
10). A brief quantitative comparison is shown in table 2. The simulation time for the RE- model was 
approximately half the simulation time for the monodomain model, with the same mesh and time 
stepping. However, as mentioned above, the RE- model allows for much coarser meshing and time 
stepping, and thus much faster simulation. To illustrate this, we added a RE- model with a coarse mesh 
and time grid to the comparison. This third model will be referred to as Coarse RE-. A monodomain 
model using the same coarse mesh will not be shown as it is numerically unstable. Model specifications 
are summarized in table 1. 
 
The presented results were obtained after manual adjustment of the RE- model wave velocities in the 
fiber and cross-fiber directions in order to match the monodomain results. In short, activation times were 
measured on points B and C (see figure 9) after simulating the monodomain and RE- models with default 
parameters. The velocities of the RE- models were then corrected with the corresponding activation 
time ratios. The wave velocity parameters are identical between RE- and Coarse RE- models. 
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 Monodomain RE- Coarse RE- 

Number of elements 520 500 520 500 2800 

Time step (ms) 0.01 0.01 1 

Spline time step (ms) -- 0.01 0.01 

Simulation time 28 CPUs 60 min 32 min 10 s 

1 CPU 25 h 13 h 9 s 

 

Table 1: Specifications for the Monodomain, RE- and Coarse RE- models. Note: the ionic 
model spline time step is kept at 0.01ms in Coarse RE- to ensure numerical stability. 

 

Fig.9: Activation time fields for the monodomain, RE- and Coarse RE- models. The stimulation is done 
on point A. Visually, the 10 isochrones have the same shape and positions on all three models. 
The distortion visible on Coarse RE- isochrones is due to the large element size. The fiber 
direction is horizontal and the cross-fiber direction is vertical. 
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Fig.10: Transmembrane potential curves at points B, C and D (see figure 9). Activation time corresponds 
to the sharp increase of transmembrane potential. Although their ionic models are identical, the 
transmembrane potential differs slightly between RE- and monodomain simulations because 
potential diffusion is present in the latter. Note: the transmembrane potential curves have an 
identical shape on all points of the RE- model (with a delay corresponding to the activation time, 
see section 5.2). The Coarse RE- curves are not included as they also have exactly the same 
shape as the RE- curves. 

 
 Activation Times (ms) 

Monodomain RE- Coarse RE- 

Maximum 106.6 107.3 107. 

Average 55.8 55.3 55.8 

Point B 29.7 29.8 30. 

Point C 103.1 102.9 102. 

Point D 56.3 55.6 56. 

Table 2: Comparison of the activation times between RE-, Coarse RE- and Monodomain 
models. 

 

8 Keywords and variables used to setup the models 

 

8.1 *EM_CONTROL 

 
Card 1 1 2 3 4 5 6 7 8 

Variable EMSOL        

Type         

 
EMSOL=14 : simple eikonal where the LS-DYNA run stops at the end of the eikonal iterations with the 
activation time in VTK format (see section 5). 
 
EMSOL=15: RE- solver (see section 5.1). 
 
EMSOL=16: RE+ model (see section 5.3). 
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8.2 *EM_CONTROL_EP 

 
Card 1 1 2 3 4 5 6 7 8 

Variable 
   

IONSOLVER     
Type I I I I     

 
IONSOLVER=2: spline ionic model (see section 5.2). 
 

Card 2 1 2 3 4 5 6 7 8 
Variable SPLITEND SPLIDT 

 
     

Type F F 
 

     
 
SPLITEND: end time used when generating the spline ionic model. The user needs to make sure it is 
larger than the action potentials (see section 5.2). 
SPLIDT: time step used when generating the spline ionic model (see section 5.2).  
 

8.3 *EM_EP_EIKONAL 

Card 1 1 2 3 4 5 6 7 8 
Variable EIKID EIKPST EIKSNS EIKSDF     

Type I I I I     
 
EIKID: Id of the eikonal  
EIKPST: Part set id on which the Eikonal model is solved.    
EIKSNS: Node set id used as a seed for Eikonal propagation.  
EIKSDF: Id of the define function used for the seed activation time 
 

Card 2 1 2 3 4 5 6 7 8 
Variable FTYPE FT FA      

Type I I F      
 
FTYPE:  Foot current type 
FT: Foot current duration (see equation 7) 
FA: Foot current amplitude (see equation 7) 
 

Card 3 1 2 3 4 5 6 7 8 
Variable SOLVETYPE 

  
     

Type I 
  

     
 
SOLVETYPE: Eikonal solve type 

EQ.0: Simple eikonal, computes only acƟvaƟon Ɵmes, for one cycle (see secƟon 4.1) 

EQ.1: Time-stepping mulƟfront eikonal. Allows for simulaƟng several cycles and reentries 
(see secƟon 4.2) 

8.4 *EM_MAT_003 

Card 1 1 2 3 4 5 6 7 8 
Variable 

  
SIGMA11 SIGMA22 SIGMA33    

Type I 
  

     
 

Card 2 1 2 3 4 5 6 7 8 
Variable SIGMA12 SIGMA13 SIGMA21 SIGMA23 SIGMA31 SIGMA32   

Type I 
  

     
 
SIGMA11,…: when using an eikonal solver, i.e. EMSOL= 14,15 or 16, these variables represent the 
wave velocity tensor, i.e (vl(x), vt(x), vn(x)) in equation (2) 
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9 Summary 

 
We presented the new „simple“ and „TSMF“ eikonal solvers available in LS-DYNA. These solvers can 
be coupled to full ionic ODE’s or „spline“ ionic model for a full time dependant EP solution, through the 
RE- and RE+ models. Like the mono/bi-domain models previously introduced in LS-DYNA, these new 
eikonal-based models allow computing the transmembrane potential and other state variables of the 
ionic model, so that they can be coupled with the mechanics (and CFD) for a multiphysics cardiac 
simulation in LS-DYNA. The advantage is that the eikonal model can be used on coarser meshes, with 
larger time steps hence reducing considerably the computation time, as presented in section 7. These 
eikonal-based models can be used on the full cardiac electric system, including the bundle of His, the 
left and right bundle branches, and the Purkinje network. The TSMF solver allows the simulation of 
reentry phenomena, which are very important in the understanding of cardiac arrhythmia. 
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