FORMING SIMULATION, META LANGUAGE AND INPUT DECKS.

TRANSLATION OF THE META LANGUAGE FOR FORMING SIMULATION INTO AN INPUT DECK FOR A FEM SOLVER.

Dr. M. Fleischer, J. Sarvas, Dr. H. Grass, Dr. J. Meinhardt,

09.05.2017

Rolls-Royce Motor Cars Limited

- Introduction.
- Forming simulation at BMW State of the art.
- From the meta language to the solver input deck.
- Summary.
- Outlook and future challenges.

- Forming simulation at BMW State of the art.
- From the meta language to the solver input deck.
- Summary.
- Outlook and future challenges.

INTRODUCTION. BMW GROUP PRODUCTION NETWORK.

INTRODUCTION. PRESS SHOP.

Raw material

Press line

Coil-cut

Forming tool

INTRODUCTION. PRESS SHOP.

Exemplary setup of a forming tool of a hood-inner.

- Forming simulation at BMW State of the art.
- From the meta language to the solver input deck.
- Summary.
- Outlook and future challenges.

FORMING SIMULATION AT BMW – STATE OF THE ART. SIMULATION IN THE TOOL DEVELOPMENT PROCESS.

FORMING SIMULATION AT BMW – STATE OF THE ART. SOFTWARE CONCEPT.

FORMING SIMULATION AT BMW – STATE OF THE ART.

The BMW meta language was implemented into a commercial version OFPL within a cooperation* with GNS** since 2010.

*Source: M. Fleischer, T. Panico, J. Meinhardt, A. Lipp; Anwendung der Simulation in der Technologie Umformen; LS-DYNA Forum 2011, Deutschland. **Source: <u>http://gns-mbh.com</u>

- Forming simulation at BMW State of the art.
- From the meta language to the solver input deck.
- Summary.
- Outlook and future challenges.

FROM THE META LANGUAGE TO THE SOLVER INPUT DECK.

From the tool to the meta language.

FROM THE META LANGUAGE TO THE SOLVER INPUT DECK. GENERIC MODEL.

Modelling for structure and heat transfer in the generic model.

FROM THE META LANGUAGE TO THE SOLVER INPUT DECK. GENERIC INPUT DECK.

Generalized setup for input decks with process and object orientation with parameters.

FROM THE META LANGUAGE TO THE SOLVER INPUT DECK. STANDARD FOR NUMBERS.

Generalized setup: Objects consist of elements with part-, node- and element-IDs.

- Standard for numbering is defined \rightarrow the objects / tools can easily be exchanged.

Object	Part-ID	Node- and Element-ID
Die	100 - 199	10.000.000 - 19.999.999
Punch	200 - 299	20.000.000 - 29.999.999
Binder	300 - 399	30.000.000 - 39.999.999
Line-Beads	450-499	45.000.000 - 49.999.999
Drawbeld - Notch	500-549	50.000.000 - 54.999.999
Drawbead - Rod	550-599	55.000.000 - 59.999.999
Blank	600 - 699	60.000.000 - 99.999.999

FROM THE META LANGUAGE TO THE SOLVER INPUT DECK. BENEFITS.

Benefits of a generalized and generic modelling.

- Setup is always identical \rightarrow Parameter files to switch between the solvers, processes, etc.
- Translator and input decks are easier to maintain.
- Input deck structure is solver generic (ASCII input deck with parameters).
- Differences are in the kinematics, material models and boundaries.

Cold forming

Press hardening

Draping of CFRP

Difference:

- Material model for blank.
- Tool modelling with solids.
- Tool kinematics.

Y Zx

Difference:

- Material model for stack.
- Tool kinematics.

- Forming simulation at BMW State of the art.
- From the meta language to the solver input deck.
- Summary.
- Outlook and future challenges.

SUMMARY.

- Usage of meta language in processes for forming simulation processes with FE solver LS-DYNA is state of the art at BMW.
- A generalized way for translation of meta language into an input deck was implemented.
- Input decks for FEM-Solver as well as the meta language have a generic and object oriented hierarchical structure.
- A linear flow in the parameter and the numerical operations inside the input deck is created analogously to a computer program.
- Structure of input decks orients at the 4 general field problems for structure, heat transfer, fluid dynamics and electromagnetic fields.

- Forming simulation at BMW State of the art.
- From the meta language to the solver input deck.
- Summary.
- Outlook and future challenges.

OUTLOOK AND FUTURE CHALLENGES.

- Cold forming simulation is state of the art.
- Coupled cold forming with heat generation inside the deep drawing process is implemented.

Example: Measurements inside the series production for validation of simulation model (wheel house).

OUTLOOK AND FUTURE CHALLENGES.

- With a translator module, the meta language is translated into solver input decks for standard forming simulations.
- By the general object orientation in the meta language, new disciplines now can be implemented into standard simulations and the input decks.

- CFD-Simulation.
 - Tool cooling with water.
 - Airflow around the parts during the production.
- EM-Simulation.
 - E.g.: Inductive local heating.

Source: www.lstc.com

THANK YOU VERY MUCH FOR YOUR ATTENTION.

